Displaying 721 – 740 of 5122

Showing per page

Approximative solutions of stochastic optimization problems

Petr Lachout (2010)

Kybernetika

The aim of this paper is to present some ideas how to relax the notion of the optimal solution of the stochastic optimization problem. In the deterministic case, ε -minimal solutions and level-minimal solutions are considered as desired relaxations. We call them approximative solutions and we introduce some possibilities how to combine them with randomness. Relations among random versions of approximative solutions and their consistency are presented in this paper. No measurability is assumed, therefore,...

AR models with uniformly distributed noise

Michal Horváth (1989)

Aplikace matematiky

AR models are frequently used but usually with normally distributed white noise. In this paper AR model with uniformly distributed white noise are introduces. The maximum likelihood estimation of unknown parameters is treated, iterative method for the calculation of estimates is presented. A numerical example of this procedure and simulation results are also given.

Artificial neural networks in time series forecasting: a comparative analysis

Héctor Allende, Claudio Moraga, Rodrigo Salas (2002)

Kybernetika

Artificial neural networks (ANN) have received a great deal of attention in many fields of engineering and science. Inspired by the study of brain architecture, ANN represent a class of non-linear models capable of learning from data. ANN have been applied in many areas where statistical methods are traditionally employed. They have been used in pattern recognition, classification, prediction and process control. The purpose of this paper is to discuss ANN and compare them to non-linear time series...

Aspects of analysis of multivariate failure time data.

Ross L. Prentice, John D. Kalbfleisch (2003)

SORT

Multivariate failure time data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated failure time when an individual is followed for the occurrence of two or more types of events for which the individual is simultaneously at risk, or when distinct individuals have depending event times; or more complicated multistate processes where individuals may move among a number of discrete states over...

Assessing influence in survival data with a cured fraction and covariates.

Edwin M. M. Ortega, Vicente G. Cancho, Victor Hugo Lachos (2008)

SORT

Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to...

Asymmetric recursive methods for time series

Tomáš Cipra (1994)

Applications of Mathematics

The problem of asymmetry appears in various aspects of time series modelling. Typical examples are asymmetric time series, asymmetric error distributions and asymmetric loss functions in estimating and predicting. The paper deals with asymmetric modifications of some recursive time series methods including Kalman filtering, exponential smoothing and recursive treatment of Box-Jenkins models.

Asymmetric semilinear copulas

Bernard De Baets, Hans De Meyer, Radko Mesiar (2007)

Kybernetika

We complement the recently introduced classes of lower and upper semilinear copulas by two new classes, called vertical and horizontal semilinear copulas, and characterize the corresponding class of diagonals. The new copulas are in essence asymmetric, with maximum asymmetry given by 1 / 16 . The only symmetric members turn out to be also lower and upper semilinear copulas, namely convex sums of Π and M .

Asymptotic analysis of minimum volume confidence regions for location-scale families

M. Alama-Bućko, A. Zaigraev (2006)

Applicationes Mathematicae

An asymptotic analysis, when the sample size n tends to infinity, of the optimal confidence region established in Czarnowska and Nagaev (2001) is considered. As a result, two confidence regions, both close to the optimal one when n is sufficiently large, are suggested with a mild assumption on the distribution of a location-scale family.

Asymptotic behavior of the empirical process for gaussian data presenting seasonal long-memory

Mohamedou Ould Haye (2002)

ESAIM: Probability and Statistics

We study the asymptotic behavior of the empirical process when the underlying data are gaussian and exhibit seasonal long-memory. We prove that the limiting process can be quite different from the limit obtained in the case of regular long-memory. However, in both cases, the limiting process is degenerated. We apply our results to von–Mises functionals and U -Statistics.

Asymptotic behavior of the Empirical Process for Gaussian data presenting seasonal long-memory

Mohamedou Ould Haye (2010)

ESAIM: Probability and Statistics

We study the asymptotic behavior of the empirical process when the underlying data are Gaussian and exhibit seasonal long-memory. We prove that the limiting process can be quite different from the limit obtained in the case of regular long-memory. However, in both cases, the limiting process is degenerated. We apply our results to von–Mises functionals and U-Statistics.

Currently displaying 721 – 740 of 5122