The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
441
In the case of the nonlinear regression model, methods and procedures have been developed to obtain estimates of the parameters. These methods are much more complicated than the procedures used if the model considered is linear. Moreover, unlike the linear case, the properties of the resulting estimators are unknown and usually depend on the true values of the estimated parameters. It is sometimes possible to approximate the nonlinear model by a linear one and use the much more developed linear...
A construction of confidence regions in nonlinear regression models is difficult mainly in the case that the dimension of an estimated vector parameter is large. A singularity is also a problem. Therefore some simple approximation of an exact confidence region is welcome. The aim of the paper is to give a small modification of a confidence ellipsoid constructed in a linearized model which is sufficient under some conditions for an approximation of the exact confidence region.
If an observation vector in a nonlinear regression model is normally distributed, then an algorithm for a determination of the exact -confidence region for the parameter of the mean value of the observation vector is well known. However its numerical realization is tedious and therefore it is of some interest to find some condition which enables us to construct this region in a simpler way.
In nonlinear regression models with constraints a linearization of the model leads to a bias in estimators of parameters of the mean value of the observation vector. Some criteria how to recognize whether a linearization is possible is developed. In the case that they are not satisfied, it is necessary to decide whether some quadratic corrections can make the estimator better. The aim of the paper is to contribute to the solution of the problem.
A linearization of the nonlinear regression model causes a bias in estimators of model parameters. It can be eliminated, e.g., either by a proper choice of the point where the model is developed into the Taylor series or by quadratic corrections of linear estimators. The aim of the paper is to obtain formulae for biases and variances of estimators in linearized models and also for corrected estimators.
The paper deals with the linear model with uncorrelated observations. The dispersions of the values observed are linear-quadratic functions of the unknown parameters of the mean (measurements by devices of a given class of precision). Investigated are the locally best linear-quadratic unbiased estimators as improvements of locally best linear unbiased estimators in the case that the design matrix has none, one or two linearly dependent rows.
The longitudinal regression model where is the th measurement of the th subject at random time , is the regression function, is a predictable covariate process observed at time and is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth -estimator of unknown parameter .
Real valued -estimators in a statistical model with observations are replaced by -valued -estimators in a new model with observations , where are regressors, is a structural parameter and a structural function of the new model. Sufficient conditions for the consistency of are derived, motivated by the sufficiency conditions for the simpler “parent estimator” . The result is a general method of consistent estimation in a class of nonlinear (pseudolinear) statistical problems. If...
Two estimates of the regression coefficient in bivariate normal distribution are considered: the usual one based on a sample and a new one making use of additional observations of one of the variables. They are compared with respect to variance. The same is done for two regression lines. The conclusion is that the additional observations are worth using only when the sample is very small.
A solution to the marginal problem is obtained in a form of parametric exponential (Gibbs–Markov) distribution, where the unknown parameters are obtained by an optimization procedure that agrees with the maximum likelihood (ML) estimate. With respect to a difficult performance of the method we propose also an alternative approach, providing the original basis of marginals can be appropriately extended. Then the (numerically feasible) solution can be obtained either by the maximum pseudo-likelihood...
This paper considers an M/M/R/N queue with heterogeneous servers in which customers balk (do not enter) with a constant probability . We develop the maximum likelihood estimates of the parameters for the M/M/R/N queue with balking and heterogeneous servers. This is a generalization of the M/M/2 queue with heterogeneous servers (without balking), and the M/M/2/N queue with balking and heterogeneous servers in the literature. We also develop the confidence interval formula for the parameter , the...
This paper considers an M/M/R/N queue with heterogeneous
servers in which customers balk (do not enter) with a constant
probability (1 - b). We develop the maximum likelihood
estimates of the parameters for the M/M/R/N queue with balking and
heterogeneous servers. This is a generalization of the M/M/2
queue with heterogeneous servers (without balking), and the
M/M/2/N queue with balking and heterogeneous servers in the
literature. We also develop the confidence interval formula for
the parameter...
Currently displaying 181 –
200 of
441