The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The paper considers the problem of estimating the risk of a tick-borne disease in a given region. A large set of epidemiological data is evaluated, including the point pattern of collected cases, the population map and covariates, i.e. explanatory variables of geographical nature, obtained from GIS. The methodology covers the choice of those covariates which influence the risk of infection most. Generalized linear models are used and AIC criterion yields the decision. Further, an empirical Bayesian...
Even for a well-trained statistician the construction of a histogram
for a given real-valued data set is a difficult problem. It is even
more difficult to construct a fully automatic procedure which
specifies the number and widths of the bins in a satisfactory manner
for a wide range of data sets. In this paper we compare several
histogram construction procedures by means of a simulation
study. The study includes plug-in methods, cross-validation,
penalized maximum
likelihood and the taut string...
Assessing the number of clusters of a statistical population is one of the essential issues of unsupervised learning. Given n independent observations X1,...,Xn drawn from an unknown multivariate probability density f, we propose a new approach to estimate the number of connected components, or clusters, of the t-level set . The basic idea is to form a rough skeleton of the set using any preliminary estimator of f, and to count the number of connected components of the resulting graph. Under...
The author applies the test criterion of P. Rothety to the statistical analysis of the positive correclation of symmetric pairs of observations. In this particular case he arrives at some new results. His work ends with a general proof of the consistency of Rothery's test.
Let be a stationary and ergodic time series taking values from a finite or countably infinite set and that is a function of the process with finite second moment. Assume that the distribution of the process is otherwise unknown. We construct a sequence of stopping times along which we will be able to estimate the conditional expectation from the observations in a point wise consistent way for a restricted class of stationary and ergodic finite or countably infinite alphabet time series...
In this paper, we investigate a nonparametric approach to provide a recursive estimator of the transition density of a piecewise-deterministic Markov process, from only one observation of the path within a long time. In this framework, we do not observe a Markov chain with transition kernel of interest. Fortunately, one may write the transition density of interest as the ratio of the invariant distributions of two embedded chains of the process. Our method consists in estimating these invariant...
This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales. In...
This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales....
The purpose of this paper is to provide a sharp analysis on the asymptotic behavior of the Durbin–Watson statistic. We focus our attention on the first-order autoregressive process where the driven noise is also given by a first-order autoregressive process. We establish the almost sure convergence and the asymptotic normality for both the least squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation estimator associated with the driven noise....
There are two kinds of universal schemes for estimating residual waiting times, those where the error tends to zero almost surely and those where the error tends to zero in some integral norm. Usually these schemes are different because different methods are used to prove their consistency. In this note we will give a single scheme where the average error is eventually small for all time instants, while the error itself tends to zero along a sequence of stopping times of density one.
The problem of estimating the probability is considered when represents a multivariate stochastic input of a monotonic function . First, a heuristic method to bound , originally proposed by de Rocquigny (2009), is formally described, involving a specialized design of numerical experiments. Then a statistical estimation of is considered based on a sequential stochastic exploration of the input space. A maximum likelihood estimator of build from successive dependent Bernoulli data is defined...
The aim of this paper is to build an estimate of an unknown density as a linear combination of functions of a dictionary. Inspired by Candès and Tao’s approach, we propose a minimization of the ℓ1-norm of the coefficients in the linear combination under an adaptive Dantzig constraint coming from sharp concentration inequalities. This allows to consider a wide class of dictionaries. Under local or global structure assumptions, oracle inequalities are derived. These theoretical results are transposed...
In this paper we are interested in the estimation of a density − defined on a compact interval of ℝ− from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated...
We consider the problem of estimating the integral of the square of a density from the observation of a sample. Our method to estimate is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for -statistics of order 2 due to Houdré and Reynaud.
Currently displaying 1 –
20 of
46