The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 221 – 240 of 386

Showing per page

On Bartlett's test for correlation between time series

Jiří Anděl, Jaromír Antoch (1998)

Kybernetika

An explicit formula for the correlation coefficient in a two-dimensional AR(1) process is derived. Approximate critical values for the correlation coefficient between two one-dimensional AR(1) processes are tabulated. They are based on Bartlett’s approximation and on an asymptotic distribution derived by McGregor. The results are compared with critical values obtained from a simulation study.

On calculation of stationary density of autoregressive processes

Jiří Anděl, Karel Hrach (2000)

Kybernetika

An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.

On interpolation in periodic autoregressive processes

Jiří Anděl, Asunción Rubio (1986)

Aplikace matematiky

The periodic autoregressive processes are useful in statistical analysis of seasonal time series. Some procedures (e.g. extrapolation) are quite analogous to those in the clasical autoregressive models. The problem of interpolation needs, however, some special methods. They are demonstrated in the paper on the case of the process of the second order with the period of length 2.

On invertibility of a random coefficient moving average model

Tomáš Marek (2005)

Kybernetika

A linear moving average model with random coefficients (RCMA) is proposed as more general alternative to usual linear MA models. The basic properties of this model are obtained. Although some model properties are similar to linear case the RCMA model class is too general to find general invertibility conditions. The invertibility of some special examples of RCMA(1) model are investigated in this paper.

On multiple periodic autoregression

Jiří Anděl (1987)

Aplikace matematiky

The model of periodic autoregression is generalized to the multivariate case. The autoregressive matrices are periodic functions of time. The mean value of the process can be a non-vanishing periodic sequence of vectors. Estimators of parameters and tests of statistical hypotheses are based on the Bayes approach. Two main versions of the model are investigated, one with constant variance matrices and the other with periodic variance matrices of the innovation process.

On periodic autoregression with unknown mean

Jiří Anděl, Asunción Rubio, Antonio Insua (1985)

Aplikace matematiky

If the parameters of an autoregressive model are periodic functions we get a periodic autoregression. In the paper the case is investigated when the expectation can also be a periodic function. The innovations have either constant or periodically changing variances.

On random processes as an implicit solution of equations

Petr Lachout (2017)

Kybernetika

Random processes with convenient properties are often employed to model observed data, particularly, coming from economy and finance. We will focus our interest in random processes given implicitly as a solution of a functional equation. For example, random processes AR, ARMA, ARCH, GARCH are belonging in this wide class. Their common feature can be expressed by requirement that stated random process together with incoming innovations must fulfill a functional equation. Functional dependence is...

On the autocorrelation function of a trended series.

Cecilio Mar Molinero (1985)

Qüestiió

Equations are derived for the autocorrelation function of a trended series. The special case of a linear trend is analysed in detail. It is shown that the zero of the autocorrelation function of a trended series is, in general, only dependent on the length of the series. This result is valid for stochastic and deterministic trends.

On the computation of the exact distribution of power divergence test statistics

Marco A. Marhuenda, Yolanda Marhuenda, Domingo Morales (2003)

Kybernetika

In this paper we introduce several algorithms to generate all the vectors in the support of a multinomial distribution. Computational studies are carried out to analyze their efficiency with respect to the CPU time and to calculate their efficiency frontiers. The proposed algorithm is used to calculate exact distributions of power divergence test statistics under the hypothesis of uniformity. Finally, several exact power comparisons are done for different divergence statistics and families of alternatives...

Currently displaying 221 – 240 of 386