The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
196
We show that the Maxwell equations
in the low frequency limit, in a domain composed of insulating
and conducting regions, has a saddle point structure, where
the electric field in the insulating region is the Lagrange
multiplier that enforces the curl-free constraint on the magnetic field.
We propose a mixed finite element technique
for solving this problem, and we show that, under mild regularity
assumption on the data, Lagrange finite elements can be used
as an alternative to edge elements.
Fast direct solvers for the Poisson equation with homogeneous Dirichlet and Neumann boundary conditions on special triangles and tetrahedra are constructed. The domain given is extended by symmetrization or skew symmetrization onto a rectangle or a rectangular parallelepiped and a fast direct solver is used there. All extendable domains are found. Eigenproblems are also considered.
The methods of the transfer of conditions are generalized so that they also cover the direct methods leading to the diagonalization of the original matrix of a system with a band matrix. Part 3 is devoted to the numerical stability of methods of the transfer of conditions described in author's previous paper. Finally, it is shown how to obtain a particular method by the choice parameters of the general algorithm.
Currently displaying 101 –
120 of
196