Reductions of multicomponent mKdV equations on symmetric spaces of DIII-type.
We consider H(curl;Ω)-elliptic problems that have been discretized by means of Nédélec's edge elements on tetrahedral meshes. Such problems occur in the numerical computation of eddy currents. From the defect equation we derive localized expressions that can be used as a posteriori error estimators to control adaptive refinement. Under certain assumptions on material parameters and computational domains, we derive local lower bounds and a global upper bound for the total error measured in...
La compréhension du passage des équations de la mécanique des fluides compressibles aux équations incompressibles a fait de grands progrès ces vingt dernières années. L’objectif de cet exposé est de présenter l’évolution des méthodes mathématiques mises en œuvre pour étudier ce passage à la limite, depuis les travaux de S. Klainerman et A. Majda dans les années quatre–vingts, jusqu’à ceux récents de G. Métivier et S. Schochet (pour les équations non isentropiques). Suivant les conditions initiales...
In this paper, we consider a family of scattering problems in perforated unbounded domains Ωε. We assume that the perforation is contained in a bounded region and that the holes have a ?critical? size. We study the asymptotic behaviour of the outgoing solutions of the steady-state scattering problem and we prove that an extra term appears in the limit equation. Finally, we obtain convergence results for scattering frequencies and solutions.