The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized....
It is well known that Hall's transformation factorizes into a composition of two isometric maps to and from a certain completion of the dual of the universal enveloping algebra of the Lie algebra of the initial Lie group. In this paper this fact will be demonstrated by exhibiting each of the maps in turn as the composition of two isometries. For the first map we use classical stochastic calculus, and in particular a stochastic analogue of the Dyson perturbation expansion. For the second map we make...
This paper considers the inversion problem related to the
manipulation of quantum
systems using laser-matter interactions. The focus
is on the identification of the field free Hamiltonian and/or
the dipole moment of a
quantum system. The evolution of the system is given by the Schrödinger
equation. The available data are observations as a function of time
corresponding to dynamics generated by electric fields. The
well-posedness of the problem is proved, mainly focusing on the uniqueness of
the...
We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term ( which does not share the...
Currently displaying 1 –
20 of
42