Displaying 161 – 180 of 246

Showing per page

An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics

Dajana Conte, Christian Lubich (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper gives an error analysis of the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of multi-particle time-dependent Schrödinger equations. The MCTDH method approximates the multivariate wave function by a linear combination of products of univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled system of ordinary differential equations and low-dimensional nonlinear partial differential equations. The main result of this...

An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups

Z. Gan (2010)

Mathematical Modelling of Natural Phenomena

We classify the hulls of different limit-periodic potentials and show that the hull of a limit-periodic potential is a procyclic group. We describe how limit-periodic potentials can be generated from a procyclic group and answer arising questions. As an expository paper, we discuss the connection between limit-periodic potentials and profinite groups as completely as possible and review some recent results on Schrödinger operators obtained in this...

An infinite torus braid yields a categorified Jones-Wenzl projector

Lev Rozansky (2014)

Fundamenta Mathematicae

A sequence of Temperley-Lieb algebra elements corresponding to torus braids with growing twisting numbers converges to the Jones-Wenzl projector. We show that a sequence of categorification complexes of these braids also has a limit which may serve as a categorification of the Jones-Wenzl projector.

An introduction to algebraic K-theory

Ausoni, Christian (2001)

Proceedings of the 20th Winter School "Geometry and Physics"

This paper gives an exposition of algebraic K-theory, which studies functors K n : Rings Abelian Groups , n an integer. Classically n = 0 , 1 introduced by Bass in the mid 60’s (based on ideas of Grothendieck and others) and n = 2 introduced by Milnor [Introduction to algebraic K-theory, Annals of Math. Studies, 72, Princeton University Press, 1971: Zbl 0237.18005]. These functors are defined and applications to topological K-theory (Swan), number theory, topology and geometry (the Wall finiteness obstruction to a CW-complex being finite,...

An introduction to quantum annealing

Diego de Falco, Dario Tamascelli (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing....

An introduction to quantum annealing

Diego de Falco, Dario Tamascelli (2011)

RAIRO - Theoretical Informatics and Applications

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing....

An introduction to quantum sheaf cohomology

Eric Sharpe (2011)

Annales de l’institut Fourier

In this note we review “quantum sheaf cohomology,” a deformation of sheaf cohomology that arises in a fashion closely akin to (and sometimes generalizing) ordinary quantum cohomology. Quantum sheaf cohomology arises in the study of (0,2) mirror symmetry, which we review. We then review standard topological field theories and the A/2, B/2 models, in which quantum sheaf cohomology arises, and outline basic definitions and computations. We then discuss (2,2) and (0,2) supersymmetric Landau-Ginzburg...

Currently displaying 161 – 180 of 246