Structure theory for second order 2D superintegrable systems with 1-parameter potentials.
We introduce the sum of observables in fuzzy quantum spaces which generalize the Kolmogorov probability space using the ideas of fuzzy set theory.
We establish a super boson-fermion correspondence, generalizing the classical boson-fermion correspondence in 2-dimensional quantum field theory. A new feature of the theory is the essential non-commutativity of bosonic fields. The superbosonic fields obtained by the super bosonization procedure from super fermionic fields form the affine superalgebra . The converse, super fermionization procedure, requires introduction of the super vertex operators. As applications, we give vertex operator constructions...
2000 Mathematics Subject Classification: 81Q60, 35Q40.A standard supersymmetric quantum system is defined by a Hamiltonian [^H] = ½([^Q]*[^Q] +[^Q][^Q]*), where the super-charge [^Q] satisfies [^Q]2 = 0, [^Q] commutes with [^H]. So we have [^H] ≥ 0 and the quantum spectrum of [^H] is non negative. On the other hand Pais-Ulhenbeck proposed in 1950 a model in quantum-field theory where the d'Alembert operator [¯] = [(∂2)/( ∂t2)] − Δx is replaced by fourth order operator [¯]([¯] + m2), in order to...