Displaying 1841 – 1860 of 2284

Showing per page

Symplectic solution supermanifolds in field theory

Schmitt, T. (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

Summary: For a large class of classical field models used for realistic quantum field theoretic models, an infinite-dimensional supermanifold of classical solutions in Minkowski space can be constructed. This solution supermanifold carries a natural symplectic structure; the resulting Poisson brackets between the field strengths are the classical prototypes of the canonical (anti-) commutation relations. Moreover, we discuss symmetries and the Noether theorem in this context.

Symplectic twistor operator and its solution space on 2

Marie Dostálová, Petr Somberg (2013)

Archivum Mathematicum

We introduce the symplectic twistor operator T s in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on 2 .

Tensor product construction of 2-freeness

R. Lenczewski (1998)

Banach Center Publications

From a sequence of m-fold tensor product constructions that give a hierarchy of freeness indexed by natural numbers m we examine in detail the first non-trivial case corresponding to m=2 which we call 2-freeness. We show that in this case the constructed tensor product of states agrees with the conditionally free product for correlations of order ≤ 4. We also show how to associate with 2-freeness a cocommutative *-bialgebra.

Ternary symmetries and the Lorentz group

Richard Kerner (2011)

Banach Center Publications

We show that the Lorentz and the SU(3) groups can be derived from the covariance principle conserving a Z₃-graded three-form on a Z₃-graded cubic algebra representing quarks endowed with non-standard commutation laws. The ternary commutation relations on an algebra generated by two elements lead to cubic combinations of three quarks or antiquarks that transform as Lorentz spinors, and binary quark-anti-quark combinations that transform as Lorentz vectors.

The ℤ₂-graded sticky shuffle product Hopf algebra

Robin L. Hudson (2006)

Banach Center Publications

By abstracting the multiplication rule for ℤ₂-graded quantum stochastic integrals, we construct a ℤ₂-graded version of the Itô Hopf algebra, based on the space of tensors over a ℤ₂-graded associative algebra. Grouplike elements of the corresponding algebra of formal power series are characterised.

Currently displaying 1841 – 1860 of 2284