Asymptotic behavior of the magnetization for the perceptron model
We study the asymptotic behaviour of the semigroup of Markov operators generated by the equation . We prove that for a > 1 this semigroup is asymptotically stable. We show that for a ≤ 1 this semigroup, properly normalized, converges to a limit which depends only on a.
A new class of CED systems, providing insight into behaviour of physical disordered materials, is introduced. It includes systems in which the conditionally exponential decay property can be attached to each entity. A limit theorem for the normalized minimum of a CED system is proved. Employing different stable schemes the universal characteristics of the behaviour of such systems are derived.
We study large deviations principles for N random processes on the lattice ℤd with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a permutation σ of N elements and a vector (x1, …, xN) of N initial points we let the random processes terminate in the points (xσ(1), …, xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove level-two...
In this article we consider a system of equations that describes a class of mass-conserving aggregation phenomena, including gravitational collapse and bacterial chemotaxis. In spatial dimensions strictly larger than two, and under the assumptions of radial symmetry, it is known that this system has at least two stable mechanisms of singularity formation (see e.g. M. P. Brenner et al. 1999, Nonlinearity 12, 1071-1098); one type is self-similar, and may be viewed as a trade-off between diffusion...
The aim of this paper is to extend the well-known asymptotic shape result for first-passage percolation on to first-passage percolation on a random environment given by the infinite cluster of a supercritical Bernoulli percolation model. We prove the convergence of the renormalized set of wet vertices to a deterministic shape that does not depend on the realization of the infinite cluster. As a special case of our result, we obtain an asymptotic shape theorem for the chemical distance in supercritical...
The aim of this paper is to extend the well-known asymptotic shape result for first-passage percolation on to first-passage percolation on a random environment given by the infinite cluster of a supercritical Bernoulli percolation model. We prove the convergence of the renormalized set of wet vertices to a deterministic shape that does not depend on the realization of the infinite cluster. As a special case of our result, we obtain an asymptotic shape theorem for the chemical distance in supercritical...
We study the initial value problem for the drift-diffusion model arising in semiconductor device simulation and plasma physics. We show that the corresponding stationary problem in the whole space ℝn admits a unique stationary solution in a general situation. Moreover, it is proved that when n ≥ 3, a unique solution to the initial value problem exists globally in time and converges to the corresponding stationary solution as time tends to infinity, provided that the amplitude of the stationary solution...
We establish necessary and sufficient conditions for the convergence (in the sense of finite dimensional distributions) of multiplicative measures on the set of partitions. The multiplicative measures depict distributions of component spectra of random structures and also the equilibria of classic models of statistical mechanics and stochastic processes of coagulation-fragmentation. We show that the convergence of multiplicative measures is equivalent to the asymptotic independence of counts of...
We prove a number of results concerning the large asymptotics of the free energy of a random matrix model with a polynomial potential. Our approach is based on a deformation of potential and on the use of the underlying integrable structures of the matrix model. The main results include the existence of a full asymptotic expansion in even powers of of the recurrence coefficients of the related orthogonal polynomials for a one-cut regular potential and the double scaling asymptotics of the free...
The present article is an overview of some mathematical results, which provide elements of rigorous basis for some multiscale computations in materials science. The emphasis is laid upon atomistic to continuum limits for crystalline materials. Various mathematical approaches are addressed. The setting is stationary. The relation to existing techniques used in the engineering literature is investigated.
In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on ℤd with d≥1, and gives a variational formula for the corresponding rate function Ia. Under Sznitman’s transience condition (T), we show that Ia is strictly convex and analytic on a non-empty open set , and that the true velocity of the particle is an element (resp. in the boundary) of when the walk is non-nestling...