The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
168 of
168
Nonlinear dynamic processes with time-varying time delays can often be encountered in industry. Time-delay estimation for nonlinear dynamic systems with time-varying time delays is an important issue for system identification. In order to estimate the dynamics of a process, a dynamic neural network with an external recurrent structure is applied in the modeling procedure. In the case where a delay is time varying, a useful way is to develop on-line time-delay estimation mechanisms to track the time-delay...
Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as neural networks become more and more popular in industrial applications of fault diagnosis. Taking into account the two crucial aspects, i.e., the nonlinear behaviour of the system being diagnosed as well as the robustness of a fault diagnosis scheme with...
Usually the problem of drift estimation for a diffusion process is considered under the hypothesis of ergodicity. It is less often considered under the hypothesis of null-recurrence, simply because there are fewer limit theorems and existing ones do not apply to the whole null-recurrent class. The aim of this paper is to provide some limit theorems for additive functionals and martingales of a general (ergodic or null) recurrent diffusion which would allow us to have a somewhat unified approach...
Currently displaying 161 –
168 of
168