The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 281 –
300 of
449
The paper deals with the description of a model which is the synthesis of two classical models, the Lotka-Volterra and McKendrick-von Foerster models. The existence and uniqueness of the solution for the new population problem are proved, as well the asymptotic periodicity but under some simplifying assumptions.
In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive...
Suppose and are two families of semigroups on a Banach space X (not necessarily of class C₀) such that for some initial datum u₀, G₁(t)u₀ tends towards an undesirable state u*. After remedying by means of an operator ρ we continue the evolution of the state by applying G₂(t) and after time 2t we retrieve a prosperous state u given by u = G₂(t)ρG₁(t)u₀. Here we are concerned with various properties of the semigroup (t): ρ → G₂(t)ρG₁(t). We define (X) to be the space of remedial operators for...
We develop the qualitative theory of the
solutions of the McKendrick partial differential equation of
population dynamics. We calculate explicitly the weak solutions
of the McKendrick equation and of the Lotka renewal integral
equation with time and age dependent birth rate. Mortality modulus
is considered age dependent. We show the existence of demography
cycles. For a population with only one reproductive age class,
independently of the stability of the weak solutions and after a
transient time,...
We present a model for describing the spread of an infectious disease with public
screening measures to control the spread. We want to address the problem of determining an
optimal screening strategy for a disease characterized by appreciable duration of the
infectiveness period and by variability of the transmission risk. The specific disease we
have in mind is the HIV infection. However the model will apply to a disease for which
class-age structure...
We consider the discrete survival red blood cells model
(*) ,
where δₙ and Pₙ are positive sequences. In the autonomous case we show that (*) has a unique positive steady state N*, we establish some sufficient conditions for oscillation of all positive solutions about N*, and when k = 1 we give a sufficient condition for N* to be globally asymptotically stable. In the nonatonomous case, assuming that there exists a positive solution Nₙ*, we present necessary and sufficient conditions for oscillation...
Currently displaying 281 –
300 of
449