Displaying 401 – 420 of 481

Showing per page

Optimal feedback control proportional to the system state can be found for non-causal descriptor systems

Galina Kurina (2002)

International Journal of Applied Mathematics and Computer Science

Optimal feedback control depending only on the system state is constructed for a control problem by the non-causal descriptor system for which optimal feedback control depending on state derivatives was considered in the paper (Meuller, 1998). To this end, a non-symmetric solution of the algebraic operator Riccati equation is used.

Optimal internal dissipation of a damped wave equation using a topological approach

Arnaud Münch (2009)

International Journal of Applied Mathematics and Computer Science

We consider a linear damped wave equation defined on a two-dimensional domain Ω, with a dissipative term localized in a subset ω. We address the shape design problem which consists in optimizing the shape of ω in order to minimize the energy of the system at a given time T . By introducing an adjoint problem, we first obtain explicitly the (shape) derivative of the energy at time T with respect to the variation in ω. Expressed as a boundary integral on ∂ω, this derivative is then used as an advection...

Optimal investment strategy for a non-life insurance company: quadratic loss

Łukasz Delong (2005)

Applicationes Mathematicae

The aim of this paper is to construct an optimal investment strategy for a non-life insurance business. We consider an insurance company which provides, in exchange for a single premium, full coverage to a portfolio of risks which generates losses according to a compound Poisson process. The insurer invests the premium and trades continuously on the financial market which consists of one risk-free asset and n risky assets (Black-Scholes market). We deal with the insurer's wealth path dependent disutility...

Optimal investment under stochastic volatility and power type utility function

Benchaabane, Abbes, Benchettah, Azzedine (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 37F21, 70H20, 37L40, 37C40, 91G80, 93E20.In this work we will study a problem of optimal investment in financial markets with stochastic volatility with small parameter. We used the averaging method of Bogoliubov for limited development for the optimal strategies when the small parameter of the model tends to zero and the limit for the optimal strategy and demonstrated the convergence of these optimal strategies.

Optimal LQ-feedback control for a class of first-order hyperbolic distributed parameter systems

Ilyasse Aksikas, Joseph J. Winkin, Denis Dochain (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The Linear-Quadratic (LQ) optimal control problem is studied for a class of first-order hyperbolic partial differential equation models by using a nonlinear infinite-dimensional (distributed parameter) Hilbert state-space description. First the dynamical properties of the linearized model around some equilibrium profile are studied. Next the LQ-feedback operator is computed by using the corresponding operator Riccati algebraic equation whose solution is obtained via a related matrix Riccati differential...

Optimal multivariable PID regulator

Jiří Mošna, Pavel Pešek (2000)

Kybernetika

A continuous version of optimal LQG design under presence of Wiener disturbances is solved for MIMO controlled plant. Traditional design tools fail to solve this problem due to unstability of the augmented plant. A class of all optimality criteria, which guarantee existence of an asymptotical solution, is defined using a plant deviation model. This class is utilized in design of an optimal state and an error feedback regulator which is presented here. The resultant optimal error regulator is interpreted...

Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains

Yannick Privat, Emmanuel Trélat, Enrique Zuazua (2016)

Journal of the European Mathematical Society

We consider the wave and Schrödinger equations on a bounded open connected subset Ω of a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its boundary is nonempty. We observe the restriction of the solutions to a measurable subset ω of Ω during a time interval [ 0 , T ] with T > 0 . It is well known that, if the pair ( ω , T ) satisfies the Geometric Control Condition ( ω being an open set), then an observability inequality holds guaranteeing that the total energy of solutions can be...

Optimal placement of controls for a one-dimensional active noise control problem

Fariba Fahroo (1998)

Kybernetika

In this paper, we investigate the optimal location of secondary sources (controls) to enhance the reduction of the noise field in a one-dimensional acoustic cavity. We first formulate the active control strategy as a linear quadratic tracking (LQT) problem in a Hilbert space, and then formulate the optimization problem as minimizing an appropriate performance criterion based on the LQT cost function with respect to the location of the controls. A numerical scheme based on the Legendre–tau method...

Optimal position targeting with stochastic linear-quadratic costs

Stefan Ankirchner, Thomas Kruse (2015)

Banach Center Publications

We consider the dynamic control problem of attaining a target position at a finite time T, while minimizing a linear-quadratic cost functional depending on the position and speed. We assume that the coefficients of the linear-quadratic cost functional are stochastic processes adapted to a Brownian filtration. We provide a probabilistic solution in terms of two coupled backward stochastic differential equations possessing a singularity at the terminal time T. We verify optimality of the candidate...

Optimal Proliferation Rate in a Cell Division Model

P. Michel (2010)

Mathematical Modelling of Natural Phenomena

We consider a size structured cell population model where a mother cell gives birth to two daughter cells. We know that the asymptotic behavior of the density of cells is given by the solution to an eigenproblem. The eigenvector gives the asymptotic shape and the eigenvalue gives the exponential growth rate and so the Maltusian parameter. The Maltusian parameter depends on the division rule for the mother cell, i.e., symmetric (the two daughter cells have the same size) or asymmetric. We use a...

Currently displaying 401 – 420 of 481