Displaying 901 – 920 of 3809

Showing per page

Controllability properties for the one-dimensional Heat equation under multiplicative or nonnegative additive controls with local mobile support

Luis Alberto Fernández, Alexander Yuri Khapalov (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We discuss several new results on nonnegative approximate controllability for the one-dimensional Heat equation governed by either multiplicative or nonnegative additive control, acting within a proper subset of the space domain at every moment of time. Our methods allow us to link these two types of controls to some extend. The main results include approximate controllability properties both for the static and mobile control supports.

Controllability properties of a class of systems modeling swimming microscopic organisms

Mario Sigalotti, Jean-Claude Vivalda (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a finite-dimensional model for the motion of microscopic organisms whose propulsion exploits the action of a layer of cilia covering its surface. The model couples Newton's laws driving the organism, considered as a rigid body, with Stokes equations governing the surrounding fluid. The action of the cilia is described by a set of controlled velocity fields on the surface of the organism. The first contribution of the paper is the proof that such a system is generically controllable...

Controllability theorem for nonlinear dynamical systems

Michał Kisielewicz (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Some sufficient conditions for controllability of nonlinear systems described by differential equation ẋ = f(t,x(t),u(t)) are given.

Controllable graphs

D. Cvetković, P. Rowlinson, Z. Stanić, M. G. Yoon (2011)

Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques

Controllable systems of partial differential equations

František Tumajer (1986)

Aplikace matematiky

In the paper definitions of various kinds of stability and boundedness of solutions of linear controllable systems of partial differential equations are introduced and their interconnections are derived. By means of Ljapunov's functions theorems are proved which give necessary and sufficient conditions for particular kinds of stability and boundedness of the solutions.

Controllablity of a quantum particle in a 1D variable domain

Karine Beauchard (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function ϕ of the particle and the control is the length l(t) of the potential well. We prove the following controllability result : given φ 0 close enough to an eigenstate corresponding to the length l = 1 and φ f close enough to another eigenstate corresponding to the length l=1, there exists a continuous function l : [ 0 , T ] + * with T > 0, such that l(0)...

Controlled functional differential equations : approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2009)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m -input, m -output, minimum-phase systems with sign-definite “high-frequency gain”. The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded...

Controlled functional differential equations: approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2008)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m-input, m-output, minimum-phase systems with sign-definite “high-frequency gain". The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded with...

Controller design for bush-type 1-d wave networks∗

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controller design for bush-type 1-d wave networks

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controller design for bush-type 1-d wave networks∗

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controlling a non-homogeneous Timoshenko beam with the aid of the torque

Grigory M. Sklyar, Grzegorz Szkibiel (2013)

International Journal of Applied Mathematics and Computer Science

Considered is the control and stabilizability of a slowly rotating non-homogeneous Timoshenko beam with the aid of a torque. It turns out that the beam is (approximately) controllable with the aid of the torque if and only if it is (approximately) controllable. However, the controllability problem appears to be a side-effect while studying the stabilizability. To build a stabilizing control one needs to go through the methods of correcting the operators with functionals so that they have finally...

Currently displaying 901 – 920 of 3809