The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1701 – 1720 of 3842

Showing per page

Integral equations and time varying linear systems.

Lucas Jódar (1986)

Stochastica

In this paper we study the resolution problem of an integral equation with operator valued kernel. We prove the equivalence between this equation and certain time varying linear operator system. Sufficient conditions for solving the problem and explicit expressions of the solutions are given.

Integrated Design of an Active Flow Control System Using a Time-Dependent Adjoint Method

E.J. Nielsen, W.T. Jones (2011)

Mathematical Modelling of Natural Phenomena

An exploratory study is performed to investigate the use of a time-dependent discrete adjoint methodology for design optimization of a high-lift wing configuration augmented with an active flow control system. The location and blowing parameters associated with a series of jet actuation orifices are used as design variables. In addition, a geometric parameterization scheme is developed to provide a compact set of design variables describing the wing...

Integrated design of observer based fault detection for a class of uncertain nonlinear systems

Wei Chen, Abdul Q. Khan, Muhammmad Abid, Steven X. Ding (2011)

International Journal of Applied Mathematics and Computer Science

Integrated design of observer based Fault Detection (FD) for a class of uncertain nonlinear systems with Lipschitz nonlinearities is studied. In the context of norm based residual evaluation, the residual generator and evaluator are designed together in an integrated form, and, based on it, a trade-off FD system is finally achieved in the sense that, for a given Fault Detection Rate (FDR), the False Alarm Rate (FAR) is minimized. A numerical example is given to illustrate the effectiveness of the...

Integrating Photosynthesis, Respiration, Biomass Partitioning, and Plant Growth: Developing a Microsoft Excel®-based Simulation Model of Wisconsin Fast Plant (Brassica rapa, Brassicaceae) Growth with Undergraduate Students

Y. L. Grossman, A. B. Berdanier, M. L. Custic, L. R. Feeley, S. F. Peake, A. J. Saenz, K. S. Sitton (2011)

Mathematical Modelling of Natural Phenomena

This paper demonstrates the development of a simple model of carbon flow during plant growth. The model was developed by six undergraduate students and their instructor as a project in a plant ecophysiology course. The paper describes the structure of the model including the equations that were used to implement it in Excel®, the plant growth experiments that were conducted to obtain information for parameterizing and testing the model, model performance, student responses to the modeling project,...

Intelligent decision-making system for autonomous robots

Zdzisław Kowalczuk, Michał Czubenko (2011)

International Journal of Applied Mathematics and Computer Science

The paper gives an account of research results concerning a project on creating a fully autonomous robotic decisionmaking system, able to interact with its environment and based on a mathematical model of human cognitive-behavioural psychology, with some key elements of personality psychology included. The principal idea of the paper is focused on the concept of needs, with a certain instrumental role of emotions.

Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence

Chunshien Li, Tai-Wei Chiang (2012)

International Journal of Applied Mathematics and Computer Science

Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued...

Interior sphere property for level sets of the value function of an exit time problem

Marco Castelpietra (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem for a system of the form x ˙ = f(x,u), with a running cost L. We prove an interior sphere property for the level sets of the corresponding value function V. From such a property we obtain a semiconcavity result for V, as well as perimeter estimates for the attainable sets of a symmetric control system.

Interior sphere property of attainable sets and time optimal control problems

Piermarco Cannarsa, Hélène Frankowska (2006)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the attainable set at time T>0 for the control system y ˙ ( t ) = f ( y ( t ) , u ( t ) ) u ( t ) U showing that, under suitable assumptions on f, such a set satisfies a uniform interior sphere condition. The interior sphere property is then applied to recover a semiconcavity result for the value function of time optimal control problems with a general target, and to deduce C1,1-regularity for boundaries of attainable sets.

Currently displaying 1701 – 1720 of 3842