On saddle measures

Henry de Thélin[1]

  • [1] Université Paris-Sud (Paris 11) Mathématique, Bât. 425 91405 Orsay (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 2, page 337-372
  • ISSN: 0373-0956

Abstract

top
We build saddle measures (in a weak sense) for holomorphic endomorphisms of 2 .

How to cite

top

Thélin, Henry de. "Sur la construction de mesures selles." Annales de l’institut Fourier 56.2 (2006): 337-372. <http://eudml.org/doc/10149>.

@article{Thélin2006,
abstract = {Nous construisons des mesures selles (dans un sens faible) pour les endomorphismes holomorphes de $\{\mathbb\{P\}^2\}(\mathbb\{C\})$.},
affiliation = {Université Paris-Sud (Paris 11) Mathématique, Bât. 425 91405 Orsay (France)},
author = {Thélin, Henry de},
journal = {Annales de l’institut Fourier},
keywords = {dynamique holomorphe; entropie; exposants de Lyapunov; Lyapounov exponent; metric entropy; holomorphic dynamics},
language = {fre},
number = {2},
pages = {337-372},
publisher = {Association des Annales de l’institut Fourier},
title = {Sur la construction de mesures selles},
url = {http://eudml.org/doc/10149},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Thélin, Henry de
TI - Sur la construction de mesures selles
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 2
SP - 337
EP - 372
AB - Nous construisons des mesures selles (dans un sens faible) pour les endomorphismes holomorphes de ${\mathbb{P}^2}(\mathbb{C})$.
LA - fre
KW - dynamique holomorphe; entropie; exposants de Lyapunov; Lyapounov exponent; metric entropy; holomorphic dynamics
UR - http://eudml.org/doc/10149
ER -

References

top
  1. E. Bedford, J. Smillie, Polynomial diffeomorphisms of 2 . III. Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann. 294 (1992), 395-420 Zbl0765.58013MR1188127
  2. F. Berteloot, C. Dupont, Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv. 80 (2005), 433-454 Zbl1079.37039MR2142250
  3. F. Berteloot, V. Mayer, Rudiments de dynamique holomorphe, 7 (2001), Société Mathématique de France, Paris Zbl1051.37019MR1973050
  4. J.-Y. Briend, Exposants de Liapounoff et points périodiques d’endomorphismes holomorphes de k , (1997) 
  5. J.-Y. Briend, J. Duval, Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de k , Acta Math. 182 (1999), 143-157 Zbl1144.37436MR1710180
  6. J.-Y. Briend, J. Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de k ( ) , IHES, Publ. Math. 93 (2001), 145-159 Zbl1010.37004MR1863737
  7. M. Brin, A. Katok, On local entropy, 1007 (1983), Lect. Notes in Math., Springer Verlag Zbl0533.58020
  8. S. Cantat, Dynamique des automorphismes des surfaces K3, Acta Math. 187 (2001), 1-57 Zbl1045.37007MR1864630
  9. L. Carleson, T.W. Gamelin, Complex dynamics, (1993), Springer-Verlag Zbl0782.30022MR1230383
  10. T.-C. Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15 (2005), 207-227 Zbl1085.37039MR2152480
  11. R. Dujardin, Laminar currents and birational dynamics Zbl1099.37037
  12. R. Dujardin, Laminar currents in 2 , Math. Ann. 325 (2003), 745-765 Zbl1021.37018MR1974567
  13. R. Dujardin, Sur l’intersection des courants laminaire, Publ. Mat. 48 (2004), 107-125 Zbl1048.32021MR2044640
  14. J.E. Fornæss, N. Sibony, Complex dynamics in higher dimension I, Astérisque 222 (1994), 201-231 Zbl0813.58030MR1285389
  15. J.E. Fornæss, N. Sibony, Complex dynamics in higher dimensions, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 439 (1994), 131-186 Zbl0811.32019MR1332961
  16. J.E. Fornæss, N. Sibony, Complex dynamics in higher dimension II, Ann. Math. Studies 137 (1995), 135-182 Zbl0847.58059MR1369137
  17. J.E. Fornæss, N. Sibony, Hyperbolic maps on 2 , Math. Ann. 311 (1998), 305-333 Zbl0928.37006MR1625746
  18. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press Zbl0878.58020MR1326374
  19. O.S. Kozlovski, An integral formula for topological entropy of C maps, Ergodic Theory Dynam. Systems 18 (1998), 405-424 Zbl0915.58058MR1619565
  20. C. Pugh, M. Shub, Ergodic attractors, Trans. Amer. Math. Soc. 312 (1989), 1-54 Zbl0684.58008MR983869
  21. D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil Mat. 9 (1978), 83-87 Zbl0432.58013MR516310
  22. H. de Thélin, Sur la laminarité de certains courants, Ann. Sci. Ecole Norm. Sup. 37 (2004), 304-311 Zbl1061.32005MR2061783
  23. H. de Thélin, Un phénomène de concentration de genre, Math. Ann. 332 (2005), 483-498 Zbl1076.37037MR2181759
  24. T. Ueda, Critical orbits of holomorphic maps on projective spaces, J. Geom. Anal. 8 (1998), 319-334 Zbl0957.32009MR1705160
  25. P. Walters, An introduction to ergodic theory, (1982), Springer, Berlin Heidelberg New York Zbl0475.28009MR648108
  26. Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), 285-300 Zbl0641.54036MR889979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.