A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations

Athanassios Batakis

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 1, page 87-107
  • ISSN: 0246-0203

How to cite

top

Batakis, Athanassios. "A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations." Annales de l'I.H.P. Probabilités et statistiques 36.1 (2000): 87-107. <http://eudml.org/doc/77651>.

@article{Batakis2000,
author = {Batakis, Athanassios},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {perturbation; convergence; continuity; Hausdorff dimension; Cantor sets; harmonic measures},
language = {eng},
number = {1},
pages = {87-107},
publisher = {Gauthier-Villars},
title = {A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations},
url = {http://eudml.org/doc/77651},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Batakis, Athanassios
TI - A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 1
SP - 87
EP - 107
LA - eng
KW - perturbation; convergence; continuity; Hausdorff dimension; Cantor sets; harmonic measures
UR - http://eudml.org/doc/77651
ER -

References

top
  1. [1] A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Annales de l' Institut Fourier, Grenoble28 (4) (1978) 169-213. Zbl0377.31001MR513885
  2. [2] Z. Balogh, I. Popovici and A. Volberg, Conformally maximal polynomial-like dynamics and invariant harmonic measure, Ergodic Theory Dynamical Systems17 (1) (1997) 1-27. Zbl0876.58036MR1440765
  3. [3] A. Batakis, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn.21 (1996) 255-270. Zbl0849.31005MR1404086
  4. [4] A. Batakis, Théorie du potentiel : 1. Sur les domaines Poissoniens 2. Sur la mesure harmonique des ensembles de Cantor, Ph.D. Thesis, Université de Paris-Sud, 1997. 
  5. [5] A. Batakis and Y. Heurteaux, On relations between entropy and Hausdorff dimension of measures, Preprint, Prépublications d'Orsay, 1998. MR1946341
  6. [6] A. Beardon, On the Hausdorff dimension of general Cantor sets, Proc. Cambridge Philos. Soc.61 (1965) 679-694. Zbl0145.05502MR177083
  7. [7] L. Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn.10 (1985) 113-123. Zbl0593.31004MR802473
  8. [8] A.H. Fan, Sur la dimension des mesures, Studia Math.111 (1994) 1-17. Zbl0805.28002
  9. [9] P. Hall and C.C. Heyde, Martingale Theory and its Applications, Probability and Mathematical Statistics, Academic Press, New York, 1980. Zbl0462.60045MR624435
  10. [10] Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. PoincaréProbab. Statist.34 (1998) 309-338. Zbl0903.28005MR1625871
  11. [11] M. Lyubich and A. Volberg, A comparison of harmonic and balanced measures on Cantor repellors, J. Fourier Analysis and Applications (Special Issue J.-P. Kahane) (1995) 379-399. Zbl0891.58024
  12. [12] N. Makarov and A. Volberg, On the harmonic measure of discontinuous fractals, Preprint LOMI E-6-86, Leningrad, 1986. 
  13. [13] P. Mattila, Geometric Measure Theory, Cambridge University Press, 1995. Zbl0883.28006MR1333890
  14. [14] A. Volberg, On harmonic measure of self-similar sets in the plane, in: Harmonic Analysis and Discrete Potential Theory, Plenum Press, 1992. MR1222465
  15. [15] A. Volberg, On the dimension of harmonic measure of Cantor-type repellers, Michigan Math. J.40 (1993) 239-258. Zbl0797.30022MR1226830
  16. [16] M. Zinsmeister, Formalisme Thermodynamique et Systèmes Dynamiques Holomorphes. Panoramas et Synthèses, Vol. 4, Société Mathématique de France, 1997. Zbl0879.58042MR1462079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.