A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 1, page 87-107
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBatakis, Athanassios. "A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations." Annales de l'I.H.P. Probabilités et statistiques 36.1 (2000): 87-107. <http://eudml.org/doc/77651>.
@article{Batakis2000,
author = {Batakis, Athanassios},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {perturbation; convergence; continuity; Hausdorff dimension; Cantor sets; harmonic measures},
language = {eng},
number = {1},
pages = {87-107},
publisher = {Gauthier-Villars},
title = {A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations},
url = {http://eudml.org/doc/77651},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Batakis, Athanassios
TI - A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 1
SP - 87
EP - 107
LA - eng
KW - perturbation; convergence; continuity; Hausdorff dimension; Cantor sets; harmonic measures
UR - http://eudml.org/doc/77651
ER -
References
top- [1] A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Annales de l' Institut Fourier, Grenoble28 (4) (1978) 169-213. Zbl0377.31001MR513885
- [2] Z. Balogh, I. Popovici and A. Volberg, Conformally maximal polynomial-like dynamics and invariant harmonic measure, Ergodic Theory Dynamical Systems17 (1) (1997) 1-27. Zbl0876.58036MR1440765
- [3] A. Batakis, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn.21 (1996) 255-270. Zbl0849.31005MR1404086
- [4] A. Batakis, Théorie du potentiel : 1. Sur les domaines Poissoniens 2. Sur la mesure harmonique des ensembles de Cantor, Ph.D. Thesis, Université de Paris-Sud, 1997.
- [5] A. Batakis and Y. Heurteaux, On relations between entropy and Hausdorff dimension of measures, Preprint, Prépublications d'Orsay, 1998. MR1946341
- [6] A. Beardon, On the Hausdorff dimension of general Cantor sets, Proc. Cambridge Philos. Soc.61 (1965) 679-694. Zbl0145.05502MR177083
- [7] L. Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn.10 (1985) 113-123. Zbl0593.31004MR802473
- [8] A.H. Fan, Sur la dimension des mesures, Studia Math.111 (1994) 1-17. Zbl0805.28002
- [9] P. Hall and C.C. Heyde, Martingale Theory and its Applications, Probability and Mathematical Statistics, Academic Press, New York, 1980. Zbl0462.60045MR624435
- [10] Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. PoincaréProbab. Statist.34 (1998) 309-338. Zbl0903.28005MR1625871
- [11] M. Lyubich and A. Volberg, A comparison of harmonic and balanced measures on Cantor repellors, J. Fourier Analysis and Applications (Special Issue J.-P. Kahane) (1995) 379-399. Zbl0891.58024
- [12] N. Makarov and A. Volberg, On the harmonic measure of discontinuous fractals, Preprint LOMI E-6-86, Leningrad, 1986.
- [13] P. Mattila, Geometric Measure Theory, Cambridge University Press, 1995. Zbl0883.28006MR1333890
- [14] A. Volberg, On harmonic measure of self-similar sets in the plane, in: Harmonic Analysis and Discrete Potential Theory, Plenum Press, 1992. MR1222465
- [15] A. Volberg, On the dimension of harmonic measure of Cantor-type repellers, Michigan Math. J.40 (1993) 239-258. Zbl0797.30022MR1226830
- [16] M. Zinsmeister, Formalisme Thermodynamique et Systèmes Dynamiques Holomorphes. Panoramas et Synthèses, Vol. 4, Société Mathématique de France, 1997. Zbl0879.58042MR1462079
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.