Normalization of bundle holomorphic contractions and applications to dynamics

François Berteloot[1]; Christophe Dupont[2]; Laura Molino[3]

  • [1] Université Toulouse III Institut Mathématique de Toulouse Équipe Émile Picard, Bat. 1R2 118, route de Narbonne 31062 Toulouse Cedex 9 (France)
  • [2] Université Paris XI-Orsay CNRS UMR 8628 Mathématique, Bât. 425 91405 Orsay Cedex (France)
  • [3] Università di Parma Dipartimento di Matematica Parco Area delle Scienze, Viale Usberti 53/A 43100 Parma (Italia)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2137-2168
  • ISSN: 0373-0956

Abstract

top
We establish a Poincaré-Dulac theorem for sequences ( G n ) n of holomorphic contractions whose differentials d 0 G n split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of k . In this context, our normalization result allows to estimate precisely the distortions of ellipsoids along typical orbits. As an application, we show how the Lyapunov exponents of the equilibrium measure are approximated in terms of the multipliers of the repulsive cycles.

How to cite

top

Berteloot, François, Dupont, Christophe, and Molino, Laura. "Normalization of bundle holomorphic contractions and applications to dynamics." Annales de l’institut Fourier 58.6 (2008): 2137-2168. <http://eudml.org/doc/10373>.

@article{Berteloot2008,
abstract = {We establish a Poincaré-Dulac theorem for sequences $(G_n)_\{n \in \mathbb\{Z\}\}$ of holomorphic contractions whose differentials $d_0 G_n$ split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of $\mathbb\{C\}\mathbb\{P\}^k$. In this context, our normalization result allows to estimate precisely the distortions of ellipsoids along typical orbits. As an application, we show how the Lyapunov exponents of the equilibrium measure are approximated in terms of the multipliers of the repulsive cycles.},
affiliation = {Université Toulouse III Institut Mathématique de Toulouse Équipe Émile Picard, Bat. 1R2 118, route de Narbonne 31062 Toulouse Cedex 9 (France); Université Paris XI-Orsay CNRS UMR 8628 Mathématique, Bât. 425 91405 Orsay Cedex (France); Università di Parma Dipartimento di Matematica Parco Area delle Scienze, Viale Usberti 53/A 43100 Parma (Italia)},
author = {Berteloot, François, Dupont, Christophe, Molino, Laura},
journal = {Annales de l’institut Fourier},
keywords = {Normalization; Poincaré-Dulac theorem; Lyapounov exponents; normal forms; bundle maps},
language = {eng},
number = {6},
pages = {2137-2168},
publisher = {Association des Annales de l’institut Fourier},
title = {Normalization of bundle holomorphic contractions and applications to dynamics},
url = {http://eudml.org/doc/10373},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Berteloot, François
AU - Dupont, Christophe
AU - Molino, Laura
TI - Normalization of bundle holomorphic contractions and applications to dynamics
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2137
EP - 2168
AB - We establish a Poincaré-Dulac theorem for sequences $(G_n)_{n \in \mathbb{Z}}$ of holomorphic contractions whose differentials $d_0 G_n$ split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of $\mathbb{C}\mathbb{P}^k$. In this context, our normalization result allows to estimate precisely the distortions of ellipsoids along typical orbits. As an application, we show how the Lyapunov exponents of the equilibrium measure are approximated in terms of the multipliers of the repulsive cycles.
LA - eng
KW - Normalization; Poincaré-Dulac theorem; Lyapounov exponents; normal forms; bundle maps
UR - http://eudml.org/doc/10373
ER -

References

top
  1. E. Bedford, M. Lyubich, J. Smillie, Distribution of periodic points of polynomial diffeomorphisms of C 2 , Invent. Math. 114 (1993), 277-288 Zbl0799.58039MR1240639
  2. F. Berteloot, Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 427-483 Zbl1123.37019
  3. F. Berteloot, G. Bassanelli, Bifurcation currents in holomorphic dynamics in k , J. Reine Angew. Math. 608 (2007), 201-235 Zbl1136.37025MR2339474
  4. F. Berteloot, C. Dupont, Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv. 80 (2005), 433-454 Zbl1079.37039MR2142250
  5. J. Y. Briend, J. Duval, Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de k , Acta Math. 182 (1999), 143-157 Zbl1144.37436
  6. T. C. Dinh, N. Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82 (2003), 367-423 Zbl1033.37023
  7. J. E. Fornæss, B. Stensønes, Stable manifolds of holomorphic hyperbolic maps, Internat. J. Math. 15 (2004), 749-758 Zbl1071.32016MR2097018
  8. M. Guysinsky, A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett. 5 (1998), 149-163 Zbl0988.37063MR1618331
  9. M. Jonsson, D. Varolin, Stable manifolds of holomorphic diffeomorphisms, Invent. Math. 149 (2002), 409-430 Zbl1048.37047MR1918677
  10. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, (1995), Cambridge Univ. Press Zbl0878.58020MR1326374
  11. A. Katok, R. Spatzier, Nonstationary normal forms and rigidity of group actions, Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 124-133 Zbl0871.58073MR1426721
  12. H. Peters, Perturbed basins of attraction, Math. Ann. 337 (2007), 1-13 Zbl1112.37037MR2262775
  13. J. P. Rosay, W. Rudin, Holomorphic maps from n to n , Trans. Amer. Math. Soc. 310 (1988), 47-86 Zbl0708.58003MR929658
  14. N. Sibony, Dynamique des applications rationnelles de k , Dynamique et Géométrie Complexes, Panoramas et Synthèses 8 (1999), SMF et EDP Sciences Zbl1020.37026MR1760844
  15. S. Sternberg, Local contractions and a theorem by Poincaré, Am. J. Math. 79 (1957), 809-824 Zbl0080.29902MR96853
  16. L. Szpiro, T. J. Tucker, Equidistribution and generalized Mahler measure, (2005) Zbl1283.37075

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.