Normalization of bundle holomorphic contractions and applications to dynamics
François Berteloot[1]; Christophe Dupont[2]; Laura Molino[3]
- [1] Université Toulouse III Institut Mathématique de Toulouse Équipe Émile Picard, Bat. 1R2 118, route de Narbonne 31062 Toulouse Cedex 9 (France)
- [2] Université Paris XI-Orsay CNRS UMR 8628 Mathématique, Bât. 425 91405 Orsay Cedex (France)
- [3] Università di Parma Dipartimento di Matematica Parco Area delle Scienze, Viale Usberti 53/A 43100 Parma (Italia)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 2137-2168
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBerteloot, François, Dupont, Christophe, and Molino, Laura. "Normalization of bundle holomorphic contractions and applications to dynamics." Annales de l’institut Fourier 58.6 (2008): 2137-2168. <http://eudml.org/doc/10373>.
@article{Berteloot2008,
abstract = {We establish a Poincaré-Dulac theorem for sequences $(G_n)_\{n \in \mathbb\{Z\}\}$ of holomorphic contractions whose differentials $d_0 G_n$ split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of $\mathbb\{C\}\mathbb\{P\}^k$. In this context, our normalization result allows to estimate precisely the distortions of ellipsoids along typical orbits. As an application, we show how the Lyapunov exponents of the equilibrium measure are approximated in terms of the multipliers of the repulsive cycles.},
affiliation = {Université Toulouse III Institut Mathématique de Toulouse Équipe Émile Picard, Bat. 1R2 118, route de Narbonne 31062 Toulouse Cedex 9 (France); Université Paris XI-Orsay CNRS UMR 8628 Mathématique, Bât. 425 91405 Orsay Cedex (France); Università di Parma Dipartimento di Matematica Parco Area delle Scienze, Viale Usberti 53/A 43100 Parma (Italia)},
author = {Berteloot, François, Dupont, Christophe, Molino, Laura},
journal = {Annales de l’institut Fourier},
keywords = {Normalization; Poincaré-Dulac theorem; Lyapounov exponents; normal forms; bundle maps},
language = {eng},
number = {6},
pages = {2137-2168},
publisher = {Association des Annales de l’institut Fourier},
title = {Normalization of bundle holomorphic contractions and applications to dynamics},
url = {http://eudml.org/doc/10373},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Berteloot, François
AU - Dupont, Christophe
AU - Molino, Laura
TI - Normalization of bundle holomorphic contractions and applications to dynamics
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2137
EP - 2168
AB - We establish a Poincaré-Dulac theorem for sequences $(G_n)_{n \in \mathbb{Z}}$ of holomorphic contractions whose differentials $d_0 G_n$ split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of $\mathbb{C}\mathbb{P}^k$. In this context, our normalization result allows to estimate precisely the distortions of ellipsoids along typical orbits. As an application, we show how the Lyapunov exponents of the equilibrium measure are approximated in terms of the multipliers of the repulsive cycles.
LA - eng
KW - Normalization; Poincaré-Dulac theorem; Lyapounov exponents; normal forms; bundle maps
UR - http://eudml.org/doc/10373
ER -
References
top- E. Bedford, M. Lyubich, J. Smillie, Distribution of periodic points of polynomial diffeomorphisms of , Invent. Math. 114 (1993), 277-288 Zbl0799.58039MR1240639
- F. Berteloot, Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 427-483 Zbl1123.37019
- F. Berteloot, G. Bassanelli, Bifurcation currents in holomorphic dynamics in , J. Reine Angew. Math. 608 (2007), 201-235 Zbl1136.37025MR2339474
- F. Berteloot, C. Dupont, Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv. 80 (2005), 433-454 Zbl1079.37039MR2142250
- J. Y. Briend, J. Duval, Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de , Acta Math. 182 (1999), 143-157 Zbl1144.37436
- T. C. Dinh, N. Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82 (2003), 367-423 Zbl1033.37023
- J. E. Fornæss, B. Stensønes, Stable manifolds of holomorphic hyperbolic maps, Internat. J. Math. 15 (2004), 749-758 Zbl1071.32016MR2097018
- M. Guysinsky, A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett. 5 (1998), 149-163 Zbl0988.37063MR1618331
- M. Jonsson, D. Varolin, Stable manifolds of holomorphic diffeomorphisms, Invent. Math. 149 (2002), 409-430 Zbl1048.37047MR1918677
- A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, (1995), Cambridge Univ. Press Zbl0878.58020MR1326374
- A. Katok, R. Spatzier, Nonstationary normal forms and rigidity of group actions, Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 124-133 Zbl0871.58073MR1426721
- H. Peters, Perturbed basins of attraction, Math. Ann. 337 (2007), 1-13 Zbl1112.37037MR2262775
- J. P. Rosay, W. Rudin, Holomorphic maps from to , Trans. Amer. Math. Soc. 310 (1988), 47-86 Zbl0708.58003MR929658
- N. Sibony, Dynamique des applications rationnelles de , Dynamique et Géométrie Complexes, Panoramas et Synthèses 8 (1999), SMF et EDP Sciences Zbl1020.37026MR1760844
- S. Sternberg, Local contractions and a theorem by Poincaré, Am. J. Math. 79 (1957), 809-824 Zbl0080.29902MR96853
- L. Szpiro, T. J. Tucker, Equidistribution and generalized Mahler measure, (2005) Zbl1283.37075
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.