Euler characteristics for -adic Lie groups
Publications Mathématiques de l'IHÉS (1999)
- Volume: 90, page 169-225
- ISSN: 0073-8301
Access Full Article
topHow to cite
topTotaro, Burt. "Euler characteristics for $p$-adic Lie groups." Publications Mathématiques de l'IHÉS 90 (1999): 169-225. <http://eudml.org/doc/104162>.
@article{Totaro1999,
author = {Totaro, Burt},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Lie groups; Lie algebras; Euler characteristics; group cohomology},
language = {eng},
pages = {169-225},
publisher = {Institut des Hautes Études Scientifiques},
title = {Euler characteristics for $p$-adic Lie groups},
url = {http://eudml.org/doc/104162},
volume = {90},
year = {1999},
}
TY - JOUR
AU - Totaro, Burt
TI - Euler characteristics for $p$-adic Lie groups
JO - Publications Mathématiques de l'IHÉS
PY - 1999
PB - Institut des Hautes Études Scientifiques
VL - 90
SP - 169
EP - 225
LA - eng
KW - Lie groups; Lie algebras; Euler characteristics; group cohomology
UR - http://eudml.org/doc/104162
ER -
References
top- [1] M. BOARDMAN, Conditionally convergent spectral sequences. In Homotopy invariant algebraic structures (Baltimore, 1998), ed. J.-P. Meyer, J. Morava, and W. S. Wilson, AMS (1999), 49-84. Zbl0947.55020
- [2] R. BOLTJE, Mackey functors and related structures in representation theory and number theory. Habilitation-Thesis, Universitat Augsburg (1995). Also at : http://www.math.uni-augsburg.de/~boltje/publications.html
- [3] A. BOREL and J. TITS, Groupes réductifs. Publ. Math. IHES 27 (1965), 55-150. Zbl0145.17402MR34 #7527
- [4] N. BOURBAKI, Groupes et algèbres de Lie. Chapitre 1. Hermann (1960). Zbl0199.35203
- [5] N. BOURBAKI, Groupes et algèbres de Lie. Chapitres 4, 5, et 6. Hermann (1968).
- [6] N. BOURBAKI, Groupes et algèbres de Lie. Chapitres 7 et 8. Diffusion C.C.L.S. (1975).
- [7] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local, I : Données radicielles valuées. Publ. Math. IHES 41 (1972), 5-251. Zbl0254.14017MR48 #6265
- [8] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local, II : Schémas en groupes. Existence d'une donnée radicielle valuée. Publ. Math. IHES 60 (1984), 5-184. Zbl0597.14041MR86c:20042
- [9] A. BRUMER, Pseudocompact algebras, profinite groups and class formations. J. Alg. 4 (1966), 442-470. Zbl0146.04702MR34 #2650
- [10] E. CARTAN, Sur les invariants intégraux de certains espaces homogènes. Ann. Société Pol. de Math. 8 (1929), 181-225. Zbl56.0371.02JFM56.0371.02
- [11] H. CARTAN and S. EILENBERG, Homological algebra. Princeton University Press (1956). Zbl0075.24305MR17,1040e
- [12] C. CHEVALLEY and S. EILENBERG, Cohomology theory of Lie groups and Lie algebras. Trans. AMS 63 (1948), 85-124. Zbl0031.24803MR9,567a
- [13] J. COATES, Fragments of the GL2 Iwasawa theory of elliptic curves without complex multiplication. In Arithmetic theory of elliptic curves (Cetraro, 1997), ed. C. Viola, Lecture Notes in Mathematics 1716, Springer (1999). Zbl1029.11016
- [14] J. COATES and S. HOWSON, Euler characteristics and elliptic curves II. J. Math. Soc. Japan, to appear. Zbl1046.11079
- [15] J. COATES and R. SUJATHA, Euler-Poincaré characteristics of abelian varieties. C. R. Acad. Sci. Paris 329 (1999), 309-313. Zbl0967.14029MR2001g:11090
- [16] C. CURTIS and I. REINER, Methods of representation theory, v. 2. John Wiley (1987). Zbl0616.20001MR88f:20002
- [17] W. FULTON and J. HARRIS, Representation theory. Springer (1991). Zbl0744.22001MR93a:20069
- [18] W. FULTON and S. LANG, Riemann-Roch algebra. Springer (1985). Zbl0579.14011MR88h:14011
- [19] D. GLUCK, Idempotent formula for the Burnside algebra with applications to the p-subgroup complex. Ill. J. Math. 25 (1981), 63-67. Zbl0424.16007MR82c:20005
- [20] G. HOCHSCHILD and J.-P. SERRE, Cohomology of Lie algebras. Ann. Math. 57 (1953), 591-603. Also in J.-P. Serre, Œuvres, Springer (1986), v. 1, 152-164. Zbl0053.01402MR14,943c
- [21] J. JANTZEN, Representations of algebraic groups. Academic Press (1984). Zbl0654.20039MR86g:20057
- [22] B. KOSTANT, Lie algebra homology and the generalized Borel-Weil theorem. Ann. Math. 74 (1961), 329-387. Zbl0134.03501MR26 #265
- [23] M. LAZARD, Groupes analytiques p-adiques. Publ. Math. IHES 26 (1965), 389-603. Zbl0139.02302MR35 #188
- [24] J.-P. MAY, The cohomology of restricted Lie algebras and of Hopf algebras. J. Alg. 3 (1966), 123-146. Zbl0163.03102MR33 #1347
- [25] N. SAAVEDRA RIVANO, Catégories tannakiennes. Lecture Notes in Mathematics 265, Springer (1972). Zbl0241.14008MR49 #2769
- [26] J.-P. SERRE, Algèbre locale. Multiplicités. Lecture Notes in Mathematics 11, Springer (1965). Zbl0142.28603MR34 #1352
- [27] J.-P. SERRE, Sur la dimension cohomologique des groupes profinis. Topology 3 (1965), 413-420. Zbl0136.27402MR31 #4853
- [28] J.-P. SERRE, Cohomologie galoisienne. Lecture Notes in Mathematics 5, 5th edition, Springer (1994). Zbl0812.12002MR96b:12010
- [29] J.-P. SERRE, La distribution d'Euler-Poincaré d'un groupe profini. In Galois representations in arithmetic algebraic geometry (Durham, 1996), ed. A. Scholl and R. Taylor, Cambridge University Press (1998), 461-493. Zbl0943.20024MR2000g:22017
- [30] R. STEINBERG, Regular elements of semi-simple algebraic groups. Publ. Math. IHES 25 (1965), 49-80. Zbl0136.30002MR31 #4788
- [31] P. SYMONDS and T. WIEGEL, Cohomology for p-adic analytic groups. To appear in New horizons in pro-p groups, ed. M. du Sautoy, D. Segal, and A. Shalev, Birkhauser.
- [32] J. TITS, Reductive groups over local fields. In Automorphic forms, representations, and L-functions (Corvallis, 1977), ed. A. Borel and W. Casselman, AMS (1979), 29-69. Zbl0415.20035MR80h:20064
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.