Euler characteristics for p -adic Lie groups

Burt Totaro

Publications Mathématiques de l'IHÉS (1999)

  • Volume: 90, page 169-225
  • ISSN: 0073-8301

How to cite

top

Totaro, Burt. "Euler characteristics for $p$-adic Lie groups." Publications Mathématiques de l'IHÉS 90 (1999): 169-225. <http://eudml.org/doc/104162>.

@article{Totaro1999,
author = {Totaro, Burt},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Lie groups; Lie algebras; Euler characteristics; group cohomology},
language = {eng},
pages = {169-225},
publisher = {Institut des Hautes Études Scientifiques},
title = {Euler characteristics for $p$-adic Lie groups},
url = {http://eudml.org/doc/104162},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Totaro, Burt
TI - Euler characteristics for $p$-adic Lie groups
JO - Publications Mathématiques de l'IHÉS
PY - 1999
PB - Institut des Hautes Études Scientifiques
VL - 90
SP - 169
EP - 225
LA - eng
KW - Lie groups; Lie algebras; Euler characteristics; group cohomology
UR - http://eudml.org/doc/104162
ER -

References

top
  1. [1] M. BOARDMAN, Conditionally convergent spectral sequences. In Homotopy invariant algebraic structures (Baltimore, 1998), ed. J.-P. Meyer, J. Morava, and W. S. Wilson, AMS (1999), 49-84. Zbl0947.55020
  2. [2] R. BOLTJE, Mackey functors and related structures in representation theory and number theory. Habilitation-Thesis, Universitat Augsburg (1995). Also at : http://www.math.uni-augsburg.de/~boltje/publications.html 
  3. [3] A. BOREL and J. TITS, Groupes réductifs. Publ. Math. IHES 27 (1965), 55-150. Zbl0145.17402MR34 #7527
  4. [4] N. BOURBAKI, Groupes et algèbres de Lie. Chapitre 1. Hermann (1960). Zbl0199.35203
  5. [5] N. BOURBAKI, Groupes et algèbres de Lie. Chapitres 4, 5, et 6. Hermann (1968). 
  6. [6] N. BOURBAKI, Groupes et algèbres de Lie. Chapitres 7 et 8. Diffusion C.C.L.S. (1975). 
  7. [7] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local, I : Données radicielles valuées. Publ. Math. IHES 41 (1972), 5-251. Zbl0254.14017MR48 #6265
  8. [8] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local, II : Schémas en groupes. Existence d'une donnée radicielle valuée. Publ. Math. IHES 60 (1984), 5-184. Zbl0597.14041MR86c:20042
  9. [9] A. BRUMER, Pseudocompact algebras, profinite groups and class formations. J. Alg. 4 (1966), 442-470. Zbl0146.04702MR34 #2650
  10. [10] E. CARTAN, Sur les invariants intégraux de certains espaces homogènes. Ann. Société Pol. de Math. 8 (1929), 181-225. Zbl56.0371.02JFM56.0371.02
  11. [11] H. CARTAN and S. EILENBERG, Homological algebra. Princeton University Press (1956). Zbl0075.24305MR17,1040e
  12. [12] C. CHEVALLEY and S. EILENBERG, Cohomology theory of Lie groups and Lie algebras. Trans. AMS 63 (1948), 85-124. Zbl0031.24803MR9,567a
  13. [13] J. COATES, Fragments of the GL2 Iwasawa theory of elliptic curves without complex multiplication. In Arithmetic theory of elliptic curves (Cetraro, 1997), ed. C. Viola, Lecture Notes in Mathematics 1716, Springer (1999). Zbl1029.11016
  14. [14] J. COATES and S. HOWSON, Euler characteristics and elliptic curves II. J. Math. Soc. Japan, to appear. Zbl1046.11079
  15. [15] J. COATES and R. SUJATHA, Euler-Poincaré characteristics of abelian varieties. C. R. Acad. Sci. Paris 329 (1999), 309-313. Zbl0967.14029MR2001g:11090
  16. [16] C. CURTIS and I. REINER, Methods of representation theory, v. 2. John Wiley (1987). Zbl0616.20001MR88f:20002
  17. [17] W. FULTON and J. HARRIS, Representation theory. Springer (1991). Zbl0744.22001MR93a:20069
  18. [18] W. FULTON and S. LANG, Riemann-Roch algebra. Springer (1985). Zbl0579.14011MR88h:14011
  19. [19] D. GLUCK, Idempotent formula for the Burnside algebra with applications to the p-subgroup complex. Ill. J. Math. 25 (1981), 63-67. Zbl0424.16007MR82c:20005
  20. [20] G. HOCHSCHILD and J.-P. SERRE, Cohomology of Lie algebras. Ann. Math. 57 (1953), 591-603. Also in J.-P. Serre, Œuvres, Springer (1986), v. 1, 152-164. Zbl0053.01402MR14,943c
  21. [21] J. JANTZEN, Representations of algebraic groups. Academic Press (1984). Zbl0654.20039MR86g:20057
  22. [22] B. KOSTANT, Lie algebra homology and the generalized Borel-Weil theorem. Ann. Math. 74 (1961), 329-387. Zbl0134.03501MR26 #265
  23. [23] M. LAZARD, Groupes analytiques p-adiques. Publ. Math. IHES 26 (1965), 389-603. Zbl0139.02302MR35 #188
  24. [24] J.-P. MAY, The cohomology of restricted Lie algebras and of Hopf algebras. J. Alg. 3 (1966), 123-146. Zbl0163.03102MR33 #1347
  25. [25] N. SAAVEDRA RIVANO, Catégories tannakiennes. Lecture Notes in Mathematics 265, Springer (1972). Zbl0241.14008MR49 #2769
  26. [26] J.-P. SERRE, Algèbre locale. Multiplicités. Lecture Notes in Mathematics 11, Springer (1965). Zbl0142.28603MR34 #1352
  27. [27] J.-P. SERRE, Sur la dimension cohomologique des groupes profinis. Topology 3 (1965), 413-420. Zbl0136.27402MR31 #4853
  28. [28] J.-P. SERRE, Cohomologie galoisienne. Lecture Notes in Mathematics 5, 5th edition, Springer (1994). Zbl0812.12002MR96b:12010
  29. [29] J.-P. SERRE, La distribution d'Euler-Poincaré d'un groupe profini. In Galois representations in arithmetic algebraic geometry (Durham, 1996), ed. A. Scholl and R. Taylor, Cambridge University Press (1998), 461-493. Zbl0943.20024MR2000g:22017
  30. [30] R. STEINBERG, Regular elements of semi-simple algebraic groups. Publ. Math. IHES 25 (1965), 49-80. Zbl0136.30002MR31 #4788
  31. [31] P. SYMONDS and T. WIEGEL, Cohomology for p-adic analytic groups. To appear in New horizons in pro-p groups, ed. M. du Sautoy, D. Segal, and A. Shalev, Birkhauser. 
  32. [32] J. TITS, Reductive groups over local fields. In Automorphic forms, representations, and L-functions (Corvallis, 1977), ed. A. Borel and W. Casselman, AMS (1979), 29-69. Zbl0415.20035MR80h:20064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.