On the Euler-Poincaré characteristics of finite dimensional p -adic Galois representations

John Coates[1]; Ramdorai Sujatha[2]; Jean-Pierre Wintenberger[3]

  • [1] DPMMS, University of Cambridge, Centre for Mathematical Sciences Wilberforce Road, Cambridge CB3 0WB
  • [2] School of Mathematics, TIFR, Homi Bhabha Road Bombay 400 005, India
  • [3] IRMA, Université Louis-Pasteur, 7, rue René-Descartes, F-67084 Strasbourg cedex, France

Publications Mathématiques de l'IHÉS (2001)

  • Volume: 93, page 107-143
  • ISSN: 0073-8301

How to cite

top

Coates, John, Sujatha, Ramdorai, and Wintenberger, Jean-Pierre. "On the Euler-Poincaré characteristics of finite dimensional $p$-adic Galois representations." Publications Mathématiques de l'IHÉS 93 (2001): 107-143. <http://eudml.org/doc/104173>.

@article{Coates2001,
affiliation = {DPMMS, University of Cambridge, Centre for Mathematical Sciences Wilberforce Road, Cambridge CB3 0WB; School of Mathematics, TIFR, Homi Bhabha Road Bombay 400 005, India; IRMA, Université Louis-Pasteur, 7, rue René-Descartes, F-67084 Strasbourg cedex, France},
author = {Coates, John, Sujatha, Ramdorai, Wintenberger, Jean-Pierre},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Galois representations; varieties over local ground fields; étale cohomology; motivic Galois representations; elliptic curves},
language = {eng},
pages = {107-143},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {On the Euler-Poincaré characteristics of finite dimensional $p$-adic Galois representations},
url = {http://eudml.org/doc/104173},
volume = {93},
year = {2001},
}

TY - JOUR
AU - Coates, John
AU - Sujatha, Ramdorai
AU - Wintenberger, Jean-Pierre
TI - On the Euler-Poincaré characteristics of finite dimensional $p$-adic Galois representations
JO - Publications Mathématiques de l'IHÉS
PY - 2001
PB - Institut des Hautes Etudes Scientifiques
VL - 93
SP - 107
EP - 143
LA - eng
KW - Galois representations; varieties over local ground fields; étale cohomology; motivic Galois representations; elliptic curves
UR - http://eudml.org/doc/104173
ER -

References

top
  1. [1] P. BERTHELOT, Cohomologie cristalline des schémas de caractéristique p | = 0 , Lecture Notes in Math. 407, Springer, 1974. Zbl0298.14012MR384804
  2. [2] A. BOREL, Linear algebraic groups, second edition, Graduate Texts in Math. 126, Springer, 1991. Zbl0726.20030MR1102012
  3. [3] N. BOURBAKI, Groupes et algèbres de Lie, Paris, Hermann, 1975. Zbl0483.22001MR453824
  4. [4] C. CHEVALLEY, S. EILENBERG, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. Zbl0031.24803MR24908
  5. [5] B. CHIARELLOTTO, B. LE STUM, Sur la pureté de la cohomologie cristalline, C.R. Acad. Sci. Paris 326, Série I (1998), 961-963. Zbl0936.14016MR1649945
  6. [6] J. COATES, R. GREENBERG, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), 124-178. Zbl0858.11032MR1369413
  7. [7] J. COATES, S. HOWSON, Euler characteristics and elliptic curves II, Journal of Math. Society of Japan 53 (2001), 175-235. Zbl1046.11079MR1800527
  8. [8] J. COATES, R. SUJATHA, Euler-Poincaré characteristics of abelian varieties, C.R. Acad. Sci. Paris, 329, Série I (1999), 309-313. Zbl0967.14029MR1713337
  9. [9] P. DELIGNE, J. S. MILNE, Tannakian Categories in: P. Deligne, J. S. Milne, A. Ogus, K. Y. Shih (ed.), Hodge cycles, motives and Shimura varieties, Lecture notes in Math. 900, Springer, 1982. Zbl0477.14004MR654325
  10. [10] M. DEMAZURE, P. GABRIEL, Groupes algébriques, tome I, North-Holland, 1970. Zbl0203.23401
  11. [11] G. FALTINGS, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366. Zbl0588.14026MR718935
  12. [12] G. FALTINGS, Crystalline cohomology and p-adic Galois representations, in: Algebraic analysis, geometry, and number theory, John Hopkins Univ. Press (1988), 25-80. Zbl0805.14008MR1463696
  13. [13] J.-M. FONTAINE, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Astérisque 65 (1979), 3-80. Zbl0429.14016MR563472
  14. [14] J.-M. FONTAINE, Représentations p-adiques semistables, in: Périodes p-adiques, Astérisque 223 (1994), 113-184. Zbl0865.14009MR1293972
  15. [15] H. GILLET, W. MESSING, Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J. 55 (1987), 501-538. Zbl0651.14014MR904940
  16. [16] L. ILLUSIE, Crystalline cohomology, in: U. Jannsen, S. Kleiman, J.-P. Serre (ed.), Motives, Proc. Symp. Pure Math. 55, Part 1 (1994), 43-70. Zbl0811.14015MR1265522
  17. [17] H. IMAI, A remark on the rational points of abelian varieties with values in cyclotomic Zp-extensions, Proc. Japan. Acad. 51 (1971), 12-16. Zbl0323.14010MR371902
  18. [18] N. KATZ, W. MESSING, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73-77. Zbl0275.14011MR332791
  19. [19] M. LAZARD, Groupes analytiques p-adiques, Publ. Math. IHES 26 (1965), 389-603. Zbl0139.02302MR209286
  20. [20] J. S. MILNE, Arithmetic Duality Theorems, Perspectives in Mathematics 1, Academic Press, 1986. Zbl0613.14019MR881804
  21. [21] R. PINK, l- adic algebraic monodromy groups, cocharacters, and the Mumford-Tate conjecture, J. Reine Angew. Math. 495 (1998), 187-237. Zbl0920.14006MR1603865
  22. [22] Groupes de monodromie en géométrie algébrique (SGA 7), exposé I, Lecture Notes in Math. 340, Springer, 1973. 
  23. [23] S. SEN, Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of Math. 97 (1973), 160-170. Zbl0258.12009MR314853
  24. [24] J.-P. SERRE, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413-420. Zbl0136.27402MR180619
  25. [25] J.-P. SERRE, Abelian l-adic representations and elliptic curves, Benjamin, 1968. Zbl0186.25701MR263823
  26. [26] J.-P. SERRE, Sur les groupes de congruence des variétés abéliennes II, Izv. Akad. Nauk. SSSR 35 (1971), 731-735. Zbl0222.14025MR289513
  27. [27] J.-P. SERRE, Représentations l-adiques, Kyoto Int. Symposium on Algebraic Number Theory (1977), 177-193 (= Collected Works II, 264-271). Zbl0406.14015MR476753
  28. [28] J.-P. SERRE, Groupes algébriques associés aux modules de Hodge-Tate, Astérisque 65 (1979), 159-188. Zbl0446.20028MR563476
  29. [29] J.-P. SERRE, Cohomologie galoisienne, 5e édition, Lecture Notes in Math. 5, Springer, 1994. Zbl0812.12002MR1324577
  30. [30] J.-P. SERRE, La distribution d’Euler-Poincaré d’un groupe profini, in A. J. Scholl and R. L. Taylor (ed.), Galois representations in Arithmetic Algebraic Geometry, Cambridge Univ. Press (1998), 461-493. Zbl0943.20024
  31. [31] J. SILVERMAN, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Math. 151, Springer, 1995. Zbl0911.14015MR1312368
  32. [32] R. SUJATHA, Euler-Poincaré characteristics of p-adic Lie groups and arithmetic, Proceedings of the International Conference on Algebra, Arithmetic and Geometry TIFR (2000), (to appear). Zbl1028.22018MR1940683
  33. [33] J. TATE, Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257-274. Zbl0359.12011MR429837
  34. [34] B. TOTARO, Euler characteristics for p-adic Lie groups, Publ. Math. IHES 90 (1999), 169-225. Zbl0971.22011MR1813226

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.