The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Spherical conjugacy classes and the Bruhat decomposition”

Combinatorial and group-theoretic compactifications of buildings

Pierre-Emmanuel Caprace, Jean Lécureux (2011)

Annales de l’institut Fourier

Similarity:

Let X be a building of arbitrary type. A compactification 𝒞 sph ( X ) of the set Res sph ( X ) of spherical residues of X is introduced. We prove that it coincides with the horofunction compactification of Res sph ( X ) endowed with a natural combinatorial distance which we call the . Points of 𝒞 sph ( X ) admit amenable stabilisers in Aut ( X ) and conversely, any amenable subgroup virtually fixes a point in 𝒞 sph ( X ) . In addition, it is shown that, provided Aut ( X ) is transitive enough, this compactification also coincides with the group-theoretic...

Proof of the Knop conjecture

Ivan V. Losev (2009)

Annales de l’institut Fourier

Similarity:

In this paper we prove the Knop conjecture asserting that two smooth affine spherical varieties with the same weight monoid are equivariantly isomorphic. We also state and prove a uniqueness property for (not necessarily smooth) affine spherical varieties.

Effective equidistribution of S-integral points on symmetric varieties

Yves Benoist, Hee Oh (2012)

Annales de l’institut Fourier

Similarity:

Let K be a global field of characteristic not 2. Let Z = H G be a symmetric variety defined over K and S a finite set of places of K . We obtain counting and equidistribution results for the S-integral points of Z . Our results are effective when K is a number field.

Linear maps preserving orbits

Gerald W. Schwarz (2012)

Annales de l’institut Fourier

Similarity:

Let H GL ( V ) be a connected complex reductive group where V is a finite-dimensional complex vector space. Let v V and let G = { g GL ( V ) g H v = H v } . Following Raïs we say that the orbit H v is if the identity component of G is H . If H is semisimple, we say that H v is for H if the identity component of G is an extension of H by a torus. We classify the H -orbits which are not (semi)-characteristic in many cases.

Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups

Cédric Bonnafé, Christophe Hohlweg (2006)

Annales de l’institut Fourier

Similarity:

We construct a subalgebra Σ ( W n ) of dimension 2 · 3 n - 1 of the group algebra of the Weyl group W n of type B n containing its usual Solomon algebra and the one of 𝔖 n : Σ ( W n ) is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras Σ ( W n ) Z Irr ( W n ) . Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to W n . In an appendix, P. Baumann and C. Hohlweg present in an...