Rational elliptic curves are modular

Bas Edixhoven

Séminaire Bourbaki (1999-2000)

  • Volume: 42, page 161-188
  • ISSN: 0303-1179

How to cite

top

Edixhoven, Bas. "Rational elliptic curves are modular." Séminaire Bourbaki 42 (1999-2000): 161-188. <http://eudml.org/doc/110273>.

@article{Edixhoven1999-2000,
author = {Edixhoven, Bas},
journal = {Séminaire Bourbaki},
keywords = {elliptic curves; modular curves; Galois representations; automorphic representations},
language = {eng},
pages = {161-188},
publisher = {Société Mathématique de France},
title = {Rational elliptic curves are modular},
url = {http://eudml.org/doc/110273},
volume = {42},
year = {1999-2000},
}

TY - JOUR
AU - Edixhoven, Bas
TI - Rational elliptic curves are modular
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 161
EP - 188
LA - eng
KW - elliptic curves; modular curves; Galois representations; automorphic representations
UR - http://eudml.org/doc/110273
ER -

References

top
  1. [1] P. Berthelot - Altérations de variétés algébriques. Séminaire Bourbaki, 1995-96, exposé 815, Astérisque241, S.M.F. (1997), 273-311. Zbl0924.14007MR1472543
  2. [2] C. Breuil - Schémas en groupes et modules filtrés. C. R. Acad. Sci. Paris328 (1999), 93-97. Zbl0924.14025MR1669039
  3. [3] C. Breuil - Groupes p-divisibles, groupes finis et modules filtrés. Ann. of Math. (2) 152 (2000), no. 2, 489-549. Mathematics. Zbl1042.14018MR1804530
  4. [4] C. Breuil, B. Conrad, F. Diamond, R. Taylor - On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc.14 (2001), no. 4, 843-939. Zbl0982.11033MR1839918
  5. [5] C. Breuil, A. Mezard - Multiplicités modulaires et représentations de GL2(Zp) et de Gal(Qp/Qp) en l = p. Preprint, June 2000, Orsay. 
  6. [6] C.J. Bushnell - Smooth representations of p-adic groups: the role of compact open subgroups. Proceedings of the international congress of mathematicians, Vol. 1, 2 (Zürich, 1994), 770-779, Birkhaüser, Basel, 1995. Zbl0856.22021MR1403977
  7. [7] K. Buzzard, M. Dickinson, N. Shepherd-Barron, R. Taylor - On icosahedral Artin representations. Duke Math. J.109 (2001), no. 2, 283-318. Zbl1015.11021MR1845181
  8. [8] K. Buzzard, R. Taylor - Companion forms and weight one forms. Ann. of Math. (2) 149 (1999), no. 3, 905-91 Zbl0965.11019MR1709306
  9. [9] H. Carayol - Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. Sci. Éc. Norm. Sup.19 (1986), 409-468. Zbl0616.10025MR870690
  10. [10] L. Clozel - Motifs et formes automorphes. Automorphic forms, Shimura varieties, and L-functions, Vol. I, edited by L. Clozel and J.S. Milne, Perspectives in Mathematics10, Academic Press (1990), 77-159. Zbl0705.11029MR1044819
  11. [11] P. Colmez, J.-M. Fontaine - Construction des représentations p-adiques semi-stables. Invent. Math.140 (2000), no. 1, 1-43. Zbl1010.14004MR1779803
  12. [12] B. Conrad - Finite group schemes over bases with low ramification. Compositio Math.119 (1999), 239-320. Zbl0984.14015MR1727133
  13. [13] B. Conrad - Ramified deformation problems. Duke Math. J.97 (1999), 439-513. Zbl0997.11042MR1682986
  14. [14] B. Conrad, F. Diamond, R. Taylor - Modularity of certain potentially Barsotti-Tate Galois representations. J.A.M.S.12 (1999), 521-567. Zbl0923.11085MR1639612
  15. [15] G. Cornell, J. Silverman, G. Stevens, EDITORS - Modular Forms and Fermat's Last TheoremSpringer-Verlag, 1997. Zbl0878.11004MR1638473
  16. [16] H. Darmon - A proof of the full Shimura-Taniyama-Weil conjecture is announced. Notices of the A.M.S., December 1999. Zbl1009.11036MR1723249
  17. [17] H. Darmon, F. Diamond, R. Taylor - Fermat's Last Theorem. Elliptic curves, modular forms and Fermat's last theorem (Hong Kong, 1993). Second edition. International Press, Cambridge, MA, 1997, 2-140. Zbl0877.11035MR1605752
  18. [18] P. Deligne - Formes modulaires et représentations l-adiques. Séminaire Bourbaki, 1968-69, exposé 355, Lecture Notes in Mathematics179, Springer (1969), 139-172. Zbl0206.49901
  19. [19] P. Deligne - Formes modulaires et représentations de GL(2). Antwerp II, Lecture Notes in Math.349, Springer (1973), 55-106. Zbl0271.10032MR347738
  20. [20] B. De Smit, H. Lenstra - Explicit construction of universal deformation rings. In [15], 313-326. Zbl0907.13010MR1638482
  21. [21] B. De Smit, K. Rubin, R. Schoof - Criteria for complete intersections. In [15], 343-355. Zbl0903.13003
  22. [22] F. Diamond - The refined conjecture of Serre. In Elliptic curves, modular forms and Fermat's last theorem (Hong Kong, 1993). International Press, 1995, 22-37. Zbl0853.11031MR1363493
  23. [23] F. Diamond - An extension of Wiles' results. In [15], 475-498. Zbl0917.11021MR1638490
  24. [24] F. Diamond - On deformation rings and Hecke rings. Ann. Math.144 (1996), 137-166. Zbl0867.11032MR1405946
  25. [25] F. Diamond - The Taylor-Wiles construction and multiplicity one. Invent. math.128 (1997), 379-391. Zbl0916.11037MR1440309
  26. [26] F. Diamond, J. Im - Modular forms and modular curves. In "Seminar on Fermat's last theorem", Canadian Mathematical Society Conference Proceedings17, 1995 (V. Kumar Murty, editor). Zbl0853.11032MR1357209
  27. [27] F. Diamond, R. Taylor - Lifting modular mod l representations. Duke Math. J.74 (1994), no. 2, 253-269. Zbl0809.11025MR1272977
  28. [28] M. Dickinson - On the modularity of certain 2-adic Galois representations. Duke Math. J.109 (2001), no. 2, 319-382 Zbl1015.11020MR1845182
  29. [29] S.J. Edixhoven - The weight in Serre's conjectures on modular forms. Invent. math?109 (1992), 563-594. Zbl0777.11013MR1176206
  30. [30] J.-M. Fontaine - Groupes p-divisibles sur les corps locaux. Astérique47-48, S.M.F., 1977. Zbl0377.14009MR498610
  31. [31] J.-M. Fontaine - Représentations p-adiques semi-stables. In "Périodes p-adiques," Astérisque223, S.M.F., 1994, p. 113-184. Zbl0865.14009MR1293972
  32. [32] J.-M. Fontaine, B. Mazur - Geometric Galois representations. In "Elliptic curves, modular forms and Fermat's Last Theorem" (Hong Kong, 1993), International Press, 1995, pp. 41-78. Zbl0839.14011MR1363495
  33. [33] K. Fujiwara - Deformation rings and Hecke rings in the totally real case. Preprint. 
  34. [34] C. Khare - A local analysis of congruences in the (p,p)-case. II. Invent. Math.143 (2001), no. 1, 129-155. Zbl0971.11028MR1802794
  35. [35] C. Khare - On isomorphisms between deformation and Hecke rings. Work in progress. 
  36. [36] R.P. Langlands - Base change for GL(2). Ann. of Math. Studies96, Princeton University Press, Princeton, 1980. Zbl0444.22007MR574808
  37. [37] J. Manoharmayum - Pairs of mod 3 and mod 5 representations arising from elliptic curves. Thesis, Cambridge University, 1998. MR1739229
  38. [38] L. Moret-Bailly - Groupes de Picard et problèmes de Skolem II. Ann. Sci. ENS22 (1989), 181-194. Zbl0704.14015MR1005158
  39. [39] R. Noot - Abelian varieties with l-adic Galois representation of Mumford's typeJ. Reine Angew. Math.519 (2000), 155-169 Zbl1042.14014MR1739726
  40. [40] J. Oesterlé - Nouvelles approches du "théorème" de Fermat. Séminaire Bourbaki, 1987-88, exposé 694, Astérisque161-162, S.M.F. (1988), 175-186. Zbl0668.10024MR992208
  41. [41] J. Oesterlé - Travaux de Wiles (et Taylor,...), partie II. Séminaire Bourbaki, 1994-95, exposé 804, Astérisque237, S.M.F. (1996), 333-355. Zbl0957.11028MR1423631
  42. [42] R. Ramakrishna - On a variation of Mazur's deformation functor. Compositio Math.87 (1993), 269-286. Zbl0910.11023MR1227448
  43. [43] R. Ramakrishna - Lifting Galois representations. Invent. math.138 (1999), 537-562. Zbl0968.11024MR1719819
  44. [44] R. Ramakrishna - Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur. Preprint. Zbl1076.11035MR1935843
  45. [45] K.A. Ribet, - On modular representations of Gal(Q/Q) arising from modular forms. Invent. math.100 (1990), 431-476. Zbl0773.11039MR1047143
  46. [46] K. Rubin - Modularity of mod 5 representations. In [15], 463-474. Zbl0914.11030MR1638489
  47. [47] T. Saito - Modular forms and p-adic Hodge theory. Invent. math.129 (1997), 607-620. Zbl0877.11034MR1465337
  48. [48] J-P. Serre - Représentations l-adiques. Kyoto Int. Symposium on Algebraic Number Theory, Japan Soc. for the Promotion of Science (1977), pp. 177-193, (Oeuvres, t. III, pp. 384-400). Zbl0406.14015MR476753
  49. [49] J-P. Serre — Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J.54 (1987), 179-230. Zbl0641.10026MR885783
  50. [50] J-P. Serre - Travaux de Wiles (et Taylor,...), partie I. Séminaire Bourbaki, 1994-95, exposé 803, Astérisque237, S.M.F. (1996), 319-332. Zbl0957.11027MR1423630
  51. [51] C. Skinner, A. Wiles - Residually reducible representations and modular forms. Pub. Math. IHES.89 (1999), 5-126. Zbl1005.11030MR1793414
  52. [52] C. Skinner, A. Wiles - Base change and a problem of Serre. Duke Math. J.107 (2001), no. 1, 15-25. Zbl1016.11017MR1815248
  53. [53] C. Skinner, A. Wiles - Nearly ordinary deformations of irreducible residual representations. Preprint. Zbl1024.11036
  54. [54] N. Shepherd-Barron, R. Taylor - Mod 2 and mod 5 icosahedral representations. J. Amer. Math. Soc.10 (1997), 281-332. Zbl1015.11019MR1415322
  55. [55] J. Tate - p-divisible groups. Proceedings of a conference on local fields (Driebergen, 1966), Springer, 1967, 158-183. Zbl0157.27601MR231827
  56. [56] J. Tate - Number theoretic background. Proceedings of Symposia in Pure Mathematics33 (1979), part 2, 3-26. Zbl0422.12007MR546607
  57. [57] R. Taylor - Icosahedral Galois representations. Pacific J. Math.: Special issue: Olga Taussky-Todd: in memoriam (1997), 337-347. Zbl0942.11031MR1610820
  58. [58] R. Taylor - Remarks on a conjecture of Fontaine and Mazur. Preprint, http://www.math.harvard.edu/ MR1954941
  59. [59] R. Taylor - On icosahedral Artin representations II. Preprint, http://www.math.harvard.edu/ Zbl1031.11031MR1981033
  60. [60] R. Taylor, A. Wiles - Ring-theoretic properties of certain Hecke algebras. Ann. Math.141 (1995), 553-572. Zbl0823.11030MR1333036
  61. [61] J. Tunnell - Artin's conjecture for representations of octahedral type. Bull. A.M.S.5 (1981), 173-175. Zbl0475.12016MR621884
  62. [62] M. Volkov - Les représentations l-adiques associées aux courbes elliptiques sur Qp. J. Reine Angew. Math.535 (2001), 65-101. Zbl1024.11038MR1837096
  63. [63] A. Weil - Exercices dyadiques. Invent. math.27 (1974), 1-22. Zbl0307.12017MR379445
  64. [64] A. Wiles - Modular elliptic curves and Fermat's Last Theorem. Ann. Math.141 (1995), 443-551. Zbl0823.11029MR1333035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.