Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne
Séminaire de théorie spectrale et géométrie (2003-2004)
- Volume: 22, page 125-152
- ISSN: 1624-5458
Access Full Article
topHow to cite
topCordero-Erausquin, Dario. "Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne." Séminaire de théorie spectrale et géométrie 22 (2003-2004): 125-152. <http://eudml.org/doc/114481>.
@article{Cordero2003-2004,
author = {Cordero-Erausquin, Dario},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Optimal transport; geometric inequality; Prekopa-Leindler inequality},
language = {fre},
pages = {125-152},
publisher = {Institut Fourier},
title = {Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne},
url = {http://eudml.org/doc/114481},
volume = {22},
year = {2003-2004},
}
TY - JOUR
AU - Cordero-Erausquin, Dario
TI - Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne
JO - Séminaire de théorie spectrale et géométrie
PY - 2003-2004
PB - Institut Fourier
VL - 22
SP - 125
EP - 152
LA - fre
KW - Optimal transport; geometric inequality; Prekopa-Leindler inequality
UR - http://eudml.org/doc/114481
ER -
References
top- [1] M. AGUEH, N. GHOUSSOUB ET X. KANG, Geometric inequalities via a general comparison principlefor interacting gases, Geom. Funct. Anal., 14 ( 2004), 215-244. Zbl1122.82022MR2053603
- [2] A. ALVINO, V. FERONE, G. TROMBETTI, ET P.-L. LIONS, Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal Non Linéaire, 14, ( 1997), 275-293. Zbl0877.35040MR1441395
- [3] T. AUBIN, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11,4 ( 1976), 573-598. Zbl0371.46011MR448404
- [4] D. BAKRY, ET M. ÉMERYDiffusions hypercontractives, in Séminaire de Probabilités XIX, Lecture Notes in Math., 1123, Springer ( 1985), 177-206. Zbl0561.60080MR889476
- [5] K.M. BALL, An elementary introduction to modem convex geometry, in Flavors of geometry, Math. Sci. Res. Inst. Publ. 31, Cambridge Univ. Press ( 1997),1-58. Zbl0901.52002
- [6] F. BARTHE, On a reverse form of the Brascamp-Lieb inequality, Invent. Math., 134 ( 1998), n°2, 335-361. Zbl0901.26010MR1650312
- [7] F. BARTHE, Optimal Young's inequality and its converse : a simple proof, Geom. Funct. Anal, 8 ( 1998), 234-242. Zbl0902.26009MR1616143
- [8] S. BOBKOV, ET M. LEDOUXFrom Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., 10 ( 2000), 1028-1052. Zbl0969.26019MR1800062
- [9] S. BOBKOV, I. GENTIL ET M. LEDOUX, Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl (9) 80 ( 2001), no4, 669-696. Zbl1038.35020MR1846020
- [10] C. BORELL, Convex set functions in d-space, Period. Math. Hungar.,6 ( 1975), 111-136. Zbl0274.28009MR404559
- [11] HJ. BRASCAMP ET E.H. LIEB, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal, 22 ( 1976), 366-389. Zbl0334.26009MR450480
- [12] Y. BRENIER, Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris Sér. I Math., 305 ( 1987), 805-808. Zbl0652.26017MR923203
- [13] Y. BRENIER, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl Math., 44 ( 1991), 375-417. Zbl0738.46011MR1100809
- [14] J. BROTHERS ET W. ZIEMERMinimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384 ( 1988), 153-179. Zbl0633.46030MR929981
- [15] D. CORDERO -ERAUSQUIN, Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal., 161 ( 2002), 257-269. Zbl0998.60080MR1894593
- [16] D. CORDERO -ERAUSQUIN, W. GANGBO, C. HOUDRÉ, Inequalities for generalized entropy and optimal transportation, in Recent Advances in the Theory and Applications of Mass Transport, Contemp. Math., 353, A.M.S., 2004. Zbl1135.49026MR2079071
- [17] D. CORDERO -ERAUSQUIN, RJ. MCCANN ET M. SCHMUCKENSCHLÄGER, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent Math., 146 ( 2001), 219-257. Zbl1026.58018MR1865396
- [18] D. CORDERO -ERAUSQUIN, RJ. MCCANN ET M. SCHMUCKENSCHLÄGER, Prékopa-Leindler type inequalities on Riemannian manifolds, mass transport and Jacobi fields, Preprint ( 2004). Zbl1125.58007MR2079070
- [19] D. CORDERO -ERAUSQUIN, B. NAZARET ET C. VILLANI, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182 ( 2004), n°2, 307-332. Zbl1048.26010MR2032031
- [20] S. DAS GUPTA, Brunn-Minkowski inequality and its aftermath, J. Multivariate Anal., 10 ( 1980), 296-318. Zbl0467.26008MR588074
- [21] O. DRUET ET E. HEBEY, The AB program in geometric analysis : sharp Sobolev inequalities and related problems, Mem. Amer.Math. Soc., 160 ( 2002), n°761. Zbl1023.58009MR1938183
- [22] S. GALLOT, D. HULIN ET J. LAFONTAINE, Riemannian Geometry, Springer-Verlag (Universitext), Berlin, 1990. Zbl0716.53001MR1083149
- [23] RJ. GARDNER, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.), 39-3 ( 2002), 355-405. Zbl1019.26008MR1898210
- [24] M. GROMOV ET V. MILMAN, A topological application of the isoperimetric inequatliry, Amer. J. Math., 105 ( 1983), 843-854. Zbl0522.53039MR708367
- [25] H. HADWIGER ET D. OHMANN, Brunn-Minkowskischer Satz und Isoperimetrie, Math. Z, 66 ( 1956), 1-8. Zbl0071.38001MR82697
- [26] H. KNOTHE, Contributions to the theory of convex bodies, Michigan Math, J., 4 ( 1957), 39-52. Zbl0077.35803MR83759
- [27] M. LEDOUX, Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités XXXIII, Lecture Notes in Math. 1709, Springer ( 1999), 120-216. Zbl0957.60016MR1767995
- [28] M. LEDOUX, The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse Math. (6)9 ( 2000), n°2, 305-366. Zbl0980.60097MR1813804
- [29] M. LEDOUX, Measure concentration, transportation cost, and functional inequalities, Summer School on Singular Phenomena and Scaling in Mathematica! Models, Bonn, 10-13 June 2003 (http ://www.lsp.ups-tlse.fr/Ledoux).
- [30] M. LEDOUX, The concentration of measure phenomenon. American Mathematical Society, Providence, RI, 2001. Zbl0995.60002MR1849347
- [31] L. LEINDLER, On a certain converse of Hölder's inequality, Acta Sci. Math., 33 ( 1972), 217-233. Zbl0245.26011MR2199372
- [32] F. MAGGI ET C. VILLANI, Balls have the worst best Sobolev inequality, Preprint ( 2004). Zbl1086.46021
- [33] B. MAUREY, Some deviation inequalities, Geom.Funct. Anal., 1 ( 1991), 188-197. Zbl0756.60018MR1097258
- [34] B. MAUREY, Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles, Séminaire Bourbaki, Novembre 2003. Zbl1101.52002MR2167203
- [35] R.J. MCCANN, Existence and uniqueness of monotone measure-preserving maps, Duke. Math. J., 80 ( 1995), 309-323. Zbl0873.28009MR1369395
- [36] R.J. MCCANN, A convexity principle for interacting gases, Adv. Math., 128 ( 1997), 153-179. Zbl0901.49012MR1451422
- [37] R.J. MCCANN, Polar factorizatîon of maps on Riemannian manifolds, Geom. Funct. Anal., 11 ( 2001), n°3, 589-608. Zbl1011.58009MR1844080
- [38] V. MILMAN ET G. SCHECHTMAN, Asymptotic theory of finite-dimensional normed spaces, LNM n°1200, Springer, Berlin, 1986. With an appendix by M. Gromov. Zbl0606.46013MR856576
- [39] G. MONGE, Mémoire sur la théorie des déblais et des remblais, in Histoire de l'Académie Royale des Sciences (Année 1781), Imprimerie Royale, Paris ( 1784), 666-704.
- [40] F. OTTO, The geometry of dissipative evolution equations : the porous medium equation, Comm. Partial Differential Equations, 26 ( 2001), n° 1-2,101-174. Zbl0984.35089MR1842429
- [41] F. OTTO ET C. VILLANI, Generalization of an inequality byTalagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 ( 2000), 361-400. Zbl0985.58019MR1760620
- [42] A. PRÉKOPA, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math., 32 ( 1971), 301-315. Zbl0235.90044MR315079
- [43] A. PRÉKOPA, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged), 34 ( 1973), 335-343. Zbl0264.90038MR404557
- [44] R. SCHNEIDER, Convex Bodies : the Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993. Zbl0798.52001MR1216521
- [45] K.-T. STURM ET M.-K. VON RENESSE, Transport inequalities, gradient estimates, entropy and Ricci curvature, à paraître dans Comm. Pure Appl. Math. Zbl1078.53028MR2142879
- [46] G. TALENTI, Best constants in Sobolev inequality, Ann. Mat Pura Appl. (IV), 110 ( 1976), 353-372. Zbl0353.46018MR463908
- [47] C. VILLANI, Topicsin Optimal Transportation, Graduate Studies in Math. 58, American Mathematical Society, Providence, RI, 2003. Zbl1106.90001MR1964483
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.