Formal deformation of curves with group scheme action

Stefan Wewers[1]

  • [1] Universität Bonn, Mathematisches Institut, beringstr. 1, 53 115 Bonn (Allemagne)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 4, page 1105-1165
  • ISSN: 0373-0956

Abstract

top
We study equivariant deformations of singular curves with an action of a finite flat group scheme, using a simplified version of Illusie's equivariant cotangent complex. We apply these methods in a special case which is relevant for the study of the stable reduction of three point covers.

How to cite

top

Wewers, Stefan. "Formal deformation of curves with group scheme action." Annales de l’institut Fourier 55.4 (2005): 1105-1165. <http://eudml.org/doc/116215>.

@article{Wewers2005,
abstract = {We study equivariant deformations of singular curves with an action of a finite flat group scheme, using a simplified version of Illusie's equivariant cotangent complex. We apply these methods in a special case which is relevant for the study of the stable reduction of three point covers.},
affiliation = {Universität Bonn, Mathematisches Institut, beringstr. 1, 53 115 Bonn (Allemagne)},
author = {Wewers, Stefan},
journal = {Annales de l’institut Fourier},
keywords = {Equivariant deformation; curves; group schemes; cotangent complex; equivariant deformation},
language = {eng},
number = {4},
pages = {1105-1165},
publisher = {Association des Annales de l'Institut Fourier},
title = {Formal deformation of curves with group scheme action},
url = {http://eudml.org/doc/116215},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Wewers, Stefan
TI - Formal deformation of curves with group scheme action
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 4
SP - 1105
EP - 1165
AB - We study equivariant deformations of singular curves with an action of a finite flat group scheme, using a simplified version of Illusie's equivariant cotangent complex. We apply these methods in a special case which is relevant for the study of the stable reduction of three point covers.
LA - eng
KW - Equivariant deformation; curves; group schemes; cotangent complex; equivariant deformation
UR - http://eudml.org/doc/116215
ER -

References

top
  1. M. Artin, A. Grothendieck, J.L. Verdier, Théorie des Topos et Cohomologie Étale des Schémas (SGA 4), Lecture Notes in Math. 269, 270, 305 (1973), Springer-Verlag MR354654
  2. P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann-Roch (SGA 6), 225 (1971), Springer-Verlag Zbl0218.14001MR354655
  3. J. Bertin, A. Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math. 141 (2000), 195-238 Zbl0993.14014MR1767273
  4. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES 36 (1969), 75-109 Zbl0181.48803MR262240
  5. J. Giraud, Cohomologie non abélienne, 179 (1971), Springer-Verlag Zbl0226.14011MR344253
  6. B. Green, M. Matignon, Lifting of Galois covers of smooth curves, Compositio Math. 113 (1998), 237-272 Zbl0923.14006MR1645000
  7. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-221 Zbl0118.26104MR102537
  8. A. Grothendieck, Catégories cofibrées additives et complexe cotangent relatif, Lecture Notes in Math. 79 (1968) Zbl0201.53803MR241495
  9. A. Grothendieck, M. Demazure, Schémas en Groupes I, II, III (SGA 3), 151, 152, 153 (1970), Springer-Verlag Zbl0207.51401MR274458
  10. R. Hartshorne, Algebraic Geometry, 52 (1977), Springer-Verlag Zbl0367.14001MR463157
  11. Y. Henrio, Arbres de Hurwitz et automorphismes d’ordre p des disques et des couronnes p -adiques formels 
  12. L. Illusie, Complexe cotangent et déformations I+II, 239, 283 (1971, 1972), Springer-Verlag Zbl0224.13014MR491680
  13. L. Illusie, Cotangent complex and deformations of torsors and group schemes, Toposes, Algebraic Geometry and Logic 274 (1972), 159-189, Springer-Verlag Zbl0238.14016
  14. G. Laumon, L. Moret-Bailly, Champs Algébriques, 39 (2000), Springer--Verlag Zbl0945.14005MR1771927
  15. H. Matsumura, Commutative Algebra, (1980), Benjamin Zbl0441.13001MR575344
  16. H. Matsumura, Commutative Ring Theory, 8 (1986), Cambridge Univ. Press Zbl0603.13001MR879273
  17. D. Mumford, Abelian Varieties, (1970), Oxford Univ. Press Zbl0326.14012MR282985
  18. M. Raynaud, Spécialisation des revêtements en caractéristique p g t ; 0 , Ann. Sci. École Norm. Sup. 32 (1999), 87-126 Zbl0999.14004MR1670532
  19. M. Saïdi, Torsors under finite and flat group schemes of rank p with Galois action Zbl1055.14048
  20. M. Schlessinger, Functors of Artin rings, Trans. Am. Math. Soc. 130 (1968), 208-222 Zbl0167.49503MR217093
  21. T. Sekiguchi, F. Oort, N. Suwa, On the deformation of Artin--Schreier to Kummer, Ann. Sci. École Norm. Sup. 22 (1989), 345-375 Zbl0714.14024MR1011987
  22. K.H. Ulbrich, Group cohomology for Picard categories, J. Algebra 91 (1984) Zbl0554.18005MR769585
  23. A. Vistoli, The deformation theory of local complete intersections 
  24. C.A. Weibel, An introduction to homological algebra, 38 (1994), Cambridge Univ. Press Zbl0797.18001MR1269324
  25. S. Wewers, Reduction and lifting of special metacyclic covers, Ann. Sci. École Norm. Sup. 36 (2003), 113-138 Zbl1042.14005MR1987978
  26. S. Wewers, Three point covers with bad reduction, J. Amer. Math. Soc. 16 (2003), 991-1032 Zbl1062.14038MR1992833

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.