Reduction and lifting of special metacyclic covers

Stefan Wewers

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 1, page 113-138
  • ISSN: 0012-9593

How to cite


Wewers, Stefan. "Reduction and lifting of special metacyclic covers." Annales scientifiques de l'École Normale Supérieure 36.1 (2003): 113-138. <>.

author = {Wewers, Stefan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {coverings; fundamental groups; Galois theory},
language = {eng},
number = {1},
pages = {113-138},
publisher = {Elsevier},
title = {Reduction and lifting of special metacyclic covers},
url = {},
volume = {36},
year = {2003},

AU - Wewers, Stefan
TI - Reduction and lifting of special metacyclic covers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 1
SP - 113
EP - 138
LA - eng
KW - coverings; fundamental groups; Galois theory
UR -
ER -


  1. [1] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 21, Springer-Verlag, 1990. Zbl0705.14001MR1045822
  2. [2] Bouw I.I., Pries R.J., Rigidity, reduction, and ramification, Math. Ann., To appear. Zbl1029.14010MR2003452
  3. [3] Bouw I.I, Wewers S., Reduction of covers and Hurwitz spaces, Available at , math.AG/0005120, 2000. Zbl1058.14050
  4. [4] Dèbes P., Douai J.-C., Algebraic covers: Field of moduli versus field of definition, Ann. Scient. Ecole Norm. Sup.30 (1997) 303-338. Zbl0906.12001MR1443489
  5. [5] Gille P., Le groupe fondamental sauvage d'une courbe affine, in: Bost J.-B., Loeser F., Raynaud M. (Eds.), Courbe semi-stable et groupe fondamental en géométrie algébrique, Progress in Math., 187, Birkhäuser, 2000, pp. 217-230. Zbl0978.14034MR1768103
  6. [6] Green B., Matignon M., Order p automorphisms of the open disc of a p-adic field, J. AMS12 (1) (1999) 269-303. Zbl0923.14007MR1630112
  7. [7] Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math.67 (1982) 23-86. Zbl0506.14016MR664324
  8. [8] Henrio Y., Arbres de Hurwitz et automorphismes d'ordre p des disques et des couronnes p-adiques formels, PhD thesis, Bordeaux, 1999. 
  9. [9] Knudsen F.F., The projectivity of the moduli space of stable curves, II, Math. Scand.52 (1983) 161-199. Zbl0544.14020MR702953
  10. [10] Milne J., Étale Cohomology, Princeton Univ. Press, 1980. Zbl0433.14012MR559531
  11. [11] Mumford D., Abelian Varieties, Oxford Univ. Press, 1970. Zbl0223.14022MR282985
  12. [12] Raynaud M., p-groupes et réduction semi-stable des courbes, in: Cartier P. (Ed.), Grothendieck Festschrift III, Progress in Math., 88, Birkhäuser, 1990, pp. 179-197. Zbl0722.14013MR1106915
  13. [13] Raynaud M., Spécialisation des revêtements en caractéristique p&gt;0, Ann. Scient. Ecole Norm. Sup. (1999) 87-126. Zbl0999.14004MR1670532
  14. [14] Saïdi M., Galois covers of degree p and semistable reduction of curves, Personal notes. 
  15. [15] Saïdi M., Revêtements modérés et groupe fondamental de graphe de groupes, Comp. Math.107 (1997) 321-340. Zbl0929.14016MR1458754
  16. [16] Serre J-P., Sur la topologie des variétés algébriques en caractéristique p, in: Symp. Int. Top. Alg., 1958, pp. 24-53. Zbl0098.13103MR98097
  17. [17] Serre J-P., Corps Locaux, Hermann, 1968. Zbl0137.02601MR354618
  18. [18] Serre J-P., Topics in Galois Theory, Research Notes in Mathematics, 1, Jones and Bartlett Publishers, 1992, Lecture notes prepared by Henri Darmon. Zbl0746.12001MR1162313
  19. [19] Stienstra J., van der Put M., van der Marel B., On p-adic monodromy, Math. Z.208 (1991) 309-325. Zbl0748.14006MR1128713
  20. [20] Wewers S., Three point covers with bad reduction, In preparation. Zbl1062.14038
  21. [21] Wewers S., Deformation of curves with group scheme action, Preprint, 2001. 
  22. [22] Yui N., On the Jacobian variety of the Fermat curve, J. Algebra65 (1980) 1-35. Zbl0437.14015MR578793

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.