Reduction and lifting of special metacyclic covers

Stefan Wewers

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 1, page 113-138
  • ISSN: 0012-9593

How to cite

top

Wewers, Stefan. "Reduction and lifting of special metacyclic covers." Annales scientifiques de l'École Normale Supérieure 36.1 (2003): 113-138. <http://eudml.org/doc/82594>.

@article{Wewers2003,
author = {Wewers, Stefan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {coverings; fundamental groups; Galois theory},
language = {eng},
number = {1},
pages = {113-138},
publisher = {Elsevier},
title = {Reduction and lifting of special metacyclic covers},
url = {http://eudml.org/doc/82594},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Wewers, Stefan
TI - Reduction and lifting of special metacyclic covers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 1
SP - 113
EP - 138
LA - eng
KW - coverings; fundamental groups; Galois theory
UR - http://eudml.org/doc/82594
ER -

References

top
  1. [1] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 21, Springer-Verlag, 1990. Zbl0705.14001MR1045822
  2. [2] Bouw I.I., Pries R.J., Rigidity, reduction, and ramification, Math. Ann., To appear. Zbl1029.14010MR2003452
  3. [3] Bouw I.I, Wewers S., Reduction of covers and Hurwitz spaces, Available at , math.AG/0005120, 2000. Zbl1058.14050
  4. [4] Dèbes P., Douai J.-C., Algebraic covers: Field of moduli versus field of definition, Ann. Scient. Ecole Norm. Sup.30 (1997) 303-338. Zbl0906.12001MR1443489
  5. [5] Gille P., Le groupe fondamental sauvage d'une courbe affine, in: Bost J.-B., Loeser F., Raynaud M. (Eds.), Courbe semi-stable et groupe fondamental en géométrie algébrique, Progress in Math., 187, Birkhäuser, 2000, pp. 217-230. Zbl0978.14034MR1768103
  6. [6] Green B., Matignon M., Order p automorphisms of the open disc of a p-adic field, J. AMS12 (1) (1999) 269-303. Zbl0923.14007MR1630112
  7. [7] Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math.67 (1982) 23-86. Zbl0506.14016MR664324
  8. [8] Henrio Y., Arbres de Hurwitz et automorphismes d'ordre p des disques et des couronnes p-adiques formels, PhD thesis, Bordeaux, 1999. 
  9. [9] Knudsen F.F., The projectivity of the moduli space of stable curves, II, Math. Scand.52 (1983) 161-199. Zbl0544.14020MR702953
  10. [10] Milne J., Étale Cohomology, Princeton Univ. Press, 1980. Zbl0433.14012MR559531
  11. [11] Mumford D., Abelian Varieties, Oxford Univ. Press, 1970. Zbl0223.14022MR282985
  12. [12] Raynaud M., p-groupes et réduction semi-stable des courbes, in: Cartier P. (Ed.), Grothendieck Festschrift III, Progress in Math., 88, Birkhäuser, 1990, pp. 179-197. Zbl0722.14013MR1106915
  13. [13] Raynaud M., Spécialisation des revêtements en caractéristique p&gt;0, Ann. Scient. Ecole Norm. Sup. (1999) 87-126. Zbl0999.14004MR1670532
  14. [14] Saïdi M., Galois covers of degree p and semistable reduction of curves, Personal notes. 
  15. [15] Saïdi M., Revêtements modérés et groupe fondamental de graphe de groupes, Comp. Math.107 (1997) 321-340. Zbl0929.14016MR1458754
  16. [16] Serre J-P., Sur la topologie des variétés algébriques en caractéristique p, in: Symp. Int. Top. Alg., 1958, pp. 24-53. Zbl0098.13103MR98097
  17. [17] Serre J-P., Corps Locaux, Hermann, 1968. Zbl0137.02601MR354618
  18. [18] Serre J-P., Topics in Galois Theory, Research Notes in Mathematics, 1, Jones and Bartlett Publishers, 1992, Lecture notes prepared by Henri Darmon. Zbl0746.12001MR1162313
  19. [19] Stienstra J., van der Put M., van der Marel B., On p-adic monodromy, Math. Z.208 (1991) 309-325. Zbl0748.14006MR1128713
  20. [20] Wewers S., Three point covers with bad reduction, In preparation. Zbl1062.14038
  21. [21] Wewers S., Deformation of curves with group scheme action, Preprint, 2001. 
  22. [22] Yui N., On the Jacobian variety of the Fermat curve, J. Algebra65 (1980) 1-35. Zbl0437.14015MR578793

NotesEmbed ?

top

You must be logged in to post comments.