Fields of moduli of three-point -covers with cyclic -Sylow, II
Andrew Obus[1]
- [1] University of Virginia 141 Cabell Drive Charlottesville, VA 22904
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 3, page 579-633
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topObus, Andrew. "Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, II." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 579-633. <http://eudml.org/doc/275731>.
@article{Obus2013,
abstract = {We continue the examination of the stable reduction and fields of moduli of $G$-Galois covers of the projective line over a complete discrete valuation field of mixed characteristic $(0, p)$, where $G$ has a cyclic$p$-Sylow subgroup $P$ of order $p^n$. Suppose further that the normalizer of $P$ acts on $P$ via an involution. Under mild assumptions, if $f: Y \rightarrow \{\mathbb\{P\}\}^1$ is a three-point $G$-Galois cover defined over $\overline\{\{\mathbb\{Q\}\}\}$, then the $n$th higher ramification groups above $p$ for the upper numbering of the (Galois closure of the) extension $K/\{\mathbb\{Q\}\}$ vanish, where $K$ is the field of moduli of $f$.},
affiliation = {University of Virginia 141 Cabell Drive Charlottesville, VA 22904},
author = {Obus, Andrew},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {field of moduli; stable reduction; Galois cover},
language = {eng},
month = {11},
number = {3},
pages = {579-633},
publisher = {Société Arithmétique de Bordeaux},
title = {Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, II},
url = {http://eudml.org/doc/275731},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Obus, Andrew
TI - Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, II
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 579
EP - 633
AB - We continue the examination of the stable reduction and fields of moduli of $G$-Galois covers of the projective line over a complete discrete valuation field of mixed characteristic $(0, p)$, where $G$ has a cyclic$p$-Sylow subgroup $P$ of order $p^n$. Suppose further that the normalizer of $P$ acts on $P$ via an involution. Under mild assumptions, if $f: Y \rightarrow {\mathbb{P}}^1$ is a three-point $G$-Galois cover defined over $\overline{{\mathbb{Q}}}$, then the $n$th higher ramification groups above $p$ for the upper numbering of the (Galois closure of the) extension $K/{\mathbb{Q}}$ vanish, where $K$ is the field of moduli of $f$.
LA - eng
KW - field of moduli; stable reduction; Galois cover
UR - http://eudml.org/doc/275731
ER -
References
top- S. Beckmann, Ramified primes in the field of moduli of branched coverings of curves. J. Algebra 125 (1989), 236–255. Zbl0698.14024MR1012673
- I. I. Bouw and S. Wewers, Reduction of covers and Hurwitz spaces. J. Reine Angew. Math. 574 (2004), 1–49. Zbl1058.14050MR2099108
- K. Coombes and D. Harbater, Hurwitz families and arithmetic Galois groups. Duke Math. J. 52 (1985), 821–839. Zbl0601.14023MR816387
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. Zbl0181.48803MR262240
- P. Deligne and M. Rapoport, Les schémas de modules de courbes élliptiques. Modular functions of one variable II, LNM 349, Springer-Verlag (1972), 143–316. Zbl0281.14010MR337993
- W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves. Ann. of Math. 90 (1969), no. 2, 542–575. Zbl0194.21901MR260752
- Y. Henrio, Disques et couronnes ultramétriques. Courbes semi-stables et groupe fondamental en géométrie algébrique, Progr. Math., 187, Birkhäuser Verlag, Basel (1998), 21–32. Zbl0979.14013MR1768091
- Y. Henrio, Arbres de Hurwitz et automorphismes d’ordre des disques et des couronnes -adiques formels. arXiv:math/0011098
- B. Huppert, Endliche gruppen. Springer-Verlag, Berlin, 1987. Zbl0217.07201
- N. Katz, Local-to-global extensions of fundamental groups. Ann. Inst. Fourier, Grenoble 36 (1986), 69–106. Zbl0564.14013MR867916
- G. Malle and B. H. Matzat, Inverse Galois theory. Springer-Verlag, Berlin, 1999. Zbl0940.12001MR1711577
- A. Obus, Fields of moduli of three-point -covers with cyclic -Sylow, I. Algebra Number Theory 6 (2012), no. 5, 833–883. Zbl1270.14012MR2968628
- A. Obus, Toward Abhyankar’s inertia conjecture for . Groupes de Galois géométriques et différentiels, Séminaires et Congrès, 27, Société Mathématique de France (2013), 191–202.
- A. Obus, Conductors of extensions of local fields, especially in characteristic . To appear in Proc. Amer. Math. Soc. Zbl1297.11144
- A. Obus, Vanishing cycles and wild monodromy. Int. Math. Res. Notices (2012), 299–338. Zbl1328.14053MR2876384
- A. Obus and S. Wewers, Cyclic extensions and the local lifting problem. To appear in Ann. of Math. Zbl1307.14042
- R. Pries, Wildly ramified covers with large genus. J. Number Theory 119 (2006), 194–209. Zbl1101.14045MR2250044
- M. Raynaud, Revêtements de la droite affine en caractéristique et conjecture d’Abhyankar. Invent. Math. 116 (1994), 425–462. Zbl0798.14013MR1253200
- M. Raynaud, Specialization des revêtements en caractéristique . Ann. Sci. École Norm. Sup. 32 (1999), 87–126. Zbl0999.14004MR1670532
- J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42. Zbl0075.30401MR82175
- J.-P. Serre, Local fields. Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
- S. Wewers, Reduction and lifting of special metacyclic covers. Ann. Sci. École Norm. Sup. (4) 36 (2003), 113–138. Zbl1042.14005MR1987978
- S. Wewers, Three point covers with bad reduction. J. Amer. Math. Soc. 16 (2003), 991–1032. Zbl1062.14038MR1992833
- S. Wewers, Formal deformation of curves with group scheme action. Ann. Inst. Fourier 55 (2005), 1105-1165. Zbl1079.14006MR2157165
- H. J. Zassenhaus, The theory of groups, 2nd ed.. Chelsea Publishing Company, New York, 1956. Zbl0083.24517MR91275
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.