Fields of moduli of three-point G -covers with cyclic p -Sylow, II

Andrew Obus[1]

  • [1] University of Virginia 141 Cabell Drive Charlottesville, VA 22904

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 3, page 579-633
  • ISSN: 1246-7405

Abstract

top
We continue the examination of the stable reduction and fields of moduli of G -Galois covers of the projective line over a complete discrete valuation field of mixed characteristic ( 0 , p ) , where G has a cyclic p -Sylow subgroup P of order p n . Suppose further that the normalizer of P acts on P via an involution. Under mild assumptions, if f : Y 1 is a three-point G -Galois cover defined over ¯ , then the n th higher ramification groups above p for the upper numbering of the (Galois closure of the) extension K / vanish, where K is the field of moduli of f .

How to cite

top

Obus, Andrew. "Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, II." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 579-633. <http://eudml.org/doc/275731>.

@article{Obus2013,
abstract = {We continue the examination of the stable reduction and fields of moduli of $G$-Galois covers of the projective line over a complete discrete valuation field of mixed characteristic $(0, p)$, where $G$ has a cyclic$p$-Sylow subgroup $P$ of order $p^n$. Suppose further that the normalizer of $P$ acts on $P$ via an involution. Under mild assumptions, if $f: Y \rightarrow \{\mathbb\{P\}\}^1$ is a three-point $G$-Galois cover defined over $\overline\{\{\mathbb\{Q\}\}\}$, then the $n$th higher ramification groups above $p$ for the upper numbering of the (Galois closure of the) extension $K/\{\mathbb\{Q\}\}$ vanish, where $K$ is the field of moduli of $f$.},
affiliation = {University of Virginia 141 Cabell Drive Charlottesville, VA 22904},
author = {Obus, Andrew},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {field of moduli; stable reduction; Galois cover},
language = {eng},
month = {11},
number = {3},
pages = {579-633},
publisher = {Société Arithmétique de Bordeaux},
title = {Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, II},
url = {http://eudml.org/doc/275731},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Obus, Andrew
TI - Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, II
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 579
EP - 633
AB - We continue the examination of the stable reduction and fields of moduli of $G$-Galois covers of the projective line over a complete discrete valuation field of mixed characteristic $(0, p)$, where $G$ has a cyclic$p$-Sylow subgroup $P$ of order $p^n$. Suppose further that the normalizer of $P$ acts on $P$ via an involution. Under mild assumptions, if $f: Y \rightarrow {\mathbb{P}}^1$ is a three-point $G$-Galois cover defined over $\overline{{\mathbb{Q}}}$, then the $n$th higher ramification groups above $p$ for the upper numbering of the (Galois closure of the) extension $K/{\mathbb{Q}}$ vanish, where $K$ is the field of moduli of $f$.
LA - eng
KW - field of moduli; stable reduction; Galois cover
UR - http://eudml.org/doc/275731
ER -

References

top
  1. S. Beckmann, Ramified primes in the field of moduli of branched coverings of curves. J. Algebra 125 (1989), 236–255. Zbl0698.14024MR1012673
  2. I. I. Bouw and S. Wewers, Reduction of covers and Hurwitz spaces. J. Reine Angew. Math. 574 (2004), 1–49. Zbl1058.14050MR2099108
  3. K. Coombes and D. Harbater, Hurwitz families and arithmetic Galois groups. Duke Math. J. 52 (1985), 821–839. Zbl0601.14023MR816387
  4. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. Zbl0181.48803MR262240
  5. P. Deligne and M. Rapoport, Les schémas de modules de courbes élliptiques. Modular functions of one variable II, LNM 349, Springer-Verlag (1972), 143–316. Zbl0281.14010MR337993
  6. W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves. Ann. of Math. 90 (1969), no. 2, 542–575. Zbl0194.21901MR260752
  7. Y. Henrio, Disques et couronnes ultramétriques. Courbes semi-stables et groupe fondamental en géométrie algébrique, Progr. Math., 187, Birkhäuser Verlag, Basel (1998), 21–32. Zbl0979.14013MR1768091
  8. Y. Henrio, Arbres de Hurwitz et automorphismes d’ordre p des disques et des couronnes p -adiques formels. arXiv:math/0011098 
  9. B. Huppert, Endliche gruppen. Springer-Verlag, Berlin, 1987. Zbl0217.07201
  10. N. Katz, Local-to-global extensions of fundamental groups. Ann. Inst. Fourier, Grenoble 36 (1986), 69–106. Zbl0564.14013MR867916
  11. G. Malle and B. H. Matzat, Inverse Galois theory. Springer-Verlag, Berlin, 1999. Zbl0940.12001MR1711577
  12. A. Obus, Fields of moduli of three-point G -covers with cyclic p -Sylow, I. Algebra Number Theory 6 (2012), no. 5, 833–883. Zbl1270.14012MR2968628
  13. A. Obus, Toward Abhyankar’s inertia conjecture for P S L 2 ( ) . Groupes de Galois géométriques et différentiels, Séminaires et Congrès, 27, Société Mathématique de France (2013), 191–202. 
  14. A. Obus, Conductors of extensions of local fields, especially in characteristic ( 0 , 2 ) . To appear in Proc. Amer. Math. Soc. Zbl1297.11144
  15. A. Obus, Vanishing cycles and wild monodromy. Int. Math. Res. Notices (2012), 299–338. Zbl1328.14053MR2876384
  16. A. Obus and S. Wewers, Cyclic extensions and the local lifting problem. To appear in Ann. of Math. Zbl1307.14042
  17. R. Pries, Wildly ramified covers with large genus. J. Number Theory 119 (2006), 194–209. Zbl1101.14045MR2250044
  18. M. Raynaud, Revêtements de la droite affine en caractéristique p &gt; 0 et conjecture d’Abhyankar. Invent. Math. 116 (1994), 425–462. Zbl0798.14013MR1253200
  19. M. Raynaud, Specialization des revêtements en caractéristique p &gt; 0 . Ann. Sci. École Norm. Sup. 32 (1999), 87–126. Zbl0999.14004MR1670532
  20. J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42. Zbl0075.30401MR82175
  21. J.-P. Serre, Local fields. Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
  22. S. Wewers, Reduction and lifting of special metacyclic covers. Ann. Sci. École Norm. Sup. (4) 36 (2003), 113–138. Zbl1042.14005MR1987978
  23. S. Wewers, Three point covers with bad reduction. J. Amer. Math. Soc. 16 (2003), 991–1032. Zbl1062.14038MR1992833
  24. S. Wewers, Formal deformation of curves with group scheme action. Ann. Inst. Fourier 55 (2005), 1105-1165. Zbl1079.14006MR2157165
  25. H. J. Zassenhaus, The theory of groups, 2nd ed.. Chelsea Publishing Company, New York, 1956. Zbl0083.24517MR91275

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.