On the number of compatibly Frobenius split subvarieties, prime -ideals, and log canonical centers
Karl Schwede[1]; Kevin Tucker[2]
- [1] University of Michigan Department of Mathematics Ann Arbor, Michigan 48109 (USA)
- [2] University of Michigan, Department of Mathematics, Ann Arbor, Michigan 48109
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1515-1531
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSchwede, Karl, and Tucker, Kevin. "On the number of compatibly Frobenius split subvarieties, prime $F$-ideals, and log canonical centers." Annales de l’institut Fourier 60.5 (2010): 1515-1531. <http://eudml.org/doc/116312>.
@article{Schwede2010,
abstract = {Let $X$ be a projective Frobenius split variety with a fixed Frobenius splitting $\theta $. In this paper we give a sharp uniform bound on the number of subvarieties of $X$ which are compatibly Frobenius split with $\theta $. Similarly, we give a bound on the number of prime $F$-ideals of an $F$-finite $F$-pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor, Michigan 48109 (USA); University of Michigan, Department of Mathematics, Ann Arbor, Michigan 48109},
author = {Schwede, Karl, Tucker, Kevin},
journal = {Annales de l’institut Fourier},
keywords = {Frobenius split; compatibly Frobenius split subvariety; log canonical center; F-ideal; -ideal},
language = {eng},
number = {5},
pages = {1515-1531},
publisher = {Association des Annales de l’institut Fourier},
title = {On the number of compatibly Frobenius split subvarieties, prime $F$-ideals, and log canonical centers},
url = {http://eudml.org/doc/116312},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Schwede, Karl
AU - Tucker, Kevin
TI - On the number of compatibly Frobenius split subvarieties, prime $F$-ideals, and log canonical centers
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1515
EP - 1531
AB - Let $X$ be a projective Frobenius split variety with a fixed Frobenius splitting $\theta $. In this paper we give a sharp uniform bound on the number of subvarieties of $X$ which are compatibly Frobenius split with $\theta $. Similarly, we give a bound on the number of prime $F$-ideals of an $F$-finite $F$-pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.
LA - eng
KW - Frobenius split; compatibly Frobenius split subvariety; log canonical center; F-ideal; -ideal
UR - http://eudml.org/doc/116312
ER -
References
top- F. Ambro, Basic properties of log canonical centers Zbl1221.14004
- F. Ambro, The locus of log canonical singularities Zbl1221.14004
- F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), 220-239 Zbl1081.14021MR1993751
- M. Brion, S. Kumar, Frobenius splitting methods in geometry and representation theory, 231 (2005), Birkhäuser Boston Inc., Boston, MA Zbl1072.14066MR2107324
- D. Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
- F. Enescu, M. Hochster, The Frobenius structure of local cohomology, Algebra Number Theory 2 (2008), 721-754 Zbl1190.13003MR2460693
- D. Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), 553-585 Zbl1058.14003MR2044495
- O. Fujino, Introduction to the log minimal model program for log canonical pairs Zbl06543115
- O. Fujino, The indices of log canonical singularities, Amer. J. Math. 123 (2001), 229-253 Zbl1064.14001MR1828222
- S. Greco, C. Traverso, On seminormal schemes, Compositio Math. 40 (1980), 325-365 Zbl0412.14024MR571055
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965) Zbl0135.39701MR199181
- R. Hartshorne, R. Speiser, Local cohomological dimension in characteristic , Ann. of Math. (2) 105 (1977), 45-79 Zbl0362.14002MR441962
- S. Helmke, On Fujita’s conjecture, Duke math. J. 88 (1997), 201-216 Zbl0876.14004MR1455517
- Y. Kawamata, On Fujita’s freeness conjecture for -folds and -folds, Math. Ann. 308 (1997), 491-505 Zbl0909.14001MR1457742
- J. Kollár, S. Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
- S. Kumar, V. B. Mehta, Finiteness of the number of compatibly-split subvarieties Zbl1183.13006
- E. Kunz, On Noetherian rings of characteristic , Amer. J. Math. 98 (1976), 999-1013 Zbl0341.13009MR432625
- R. Lazarsfeld, Positivity in algebraic geometry. I, 48 (2004), Springer-Verlag, Berlin Zbl1066.14021MR2095471
- R. Lazarsfeld, Positivity in algebraic geometry. II, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
- V. B. Mehta, A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), 27-40 Zbl0601.14043MR799251
- K. Schwede, Centers of -purity Zbl1213.13014
- K. Schwede, -adjunction Zbl1209.13013
- K. Schwede, Gluing schemes and a scheme without closed points, 386 (2005), American Mathematical Society, Providence, RI Zbl1216.14003MR2182775
- K. Schwede, K. Smith, Globally -regular and log Fano varieties Zbl1193.13004
- R. Y. Sharp, Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure, Trans. Amer. Math. Soc. 359 (2007), 4237-4258 (electronic) Zbl1130.13002MR2309183
- K. E. Smith, Test ideals in local rings, Trans. Amer. Math. Soc. 347 (1995), 3453-3472 Zbl0849.13003MR1311917
- K. E. Smith, Vanishing, singularities and effective bounds via prime characteristic local algebra, 62 (1997), Amer. Math. Soc., Providence, RI Zbl0913.13004MR1492526
- K. E. Smith, Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553-572 Zbl0994.14012MR1786505
- R. G. Swan, On seminormality, J. Algebra 67 (1980), 210-229 Zbl0473.13001MR595029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.