On the number of compatibly Frobenius split subvarieties, prime F -ideals, and log canonical centers

Karl Schwede[1]; Kevin Tucker[2]

  • [1] University of Michigan Department of Mathematics Ann Arbor, Michigan 48109 (USA)
  • [2] University of Michigan, Department of Mathematics, Ann Arbor, Michigan 48109

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 5, page 1515-1531
  • ISSN: 0373-0956

Abstract

top
Let X be a projective Frobenius split variety with a fixed Frobenius splitting θ . In this paper we give a sharp uniform bound on the number of subvarieties of X which are compatibly Frobenius split with θ . Similarly, we give a bound on the number of prime F -ideals of an F -finite F -pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.

How to cite

top

Schwede, Karl, and Tucker, Kevin. "On the number of compatibly Frobenius split subvarieties, prime $F$-ideals, and log canonical centers." Annales de l’institut Fourier 60.5 (2010): 1515-1531. <http://eudml.org/doc/116312>.

@article{Schwede2010,
abstract = {Let $X$ be a projective Frobenius split variety with a fixed Frobenius splitting $\theta $. In this paper we give a sharp uniform bound on the number of subvarieties of $X$ which are compatibly Frobenius split with $\theta $. Similarly, we give a bound on the number of prime $F$-ideals of an $F$-finite $F$-pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor, Michigan 48109 (USA); University of Michigan, Department of Mathematics, Ann Arbor, Michigan 48109},
author = {Schwede, Karl, Tucker, Kevin},
journal = {Annales de l’institut Fourier},
keywords = {Frobenius split; compatibly Frobenius split subvariety; log canonical center; F-ideal; -ideal},
language = {eng},
number = {5},
pages = {1515-1531},
publisher = {Association des Annales de l’institut Fourier},
title = {On the number of compatibly Frobenius split subvarieties, prime $F$-ideals, and log canonical centers},
url = {http://eudml.org/doc/116312},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Schwede, Karl
AU - Tucker, Kevin
TI - On the number of compatibly Frobenius split subvarieties, prime $F$-ideals, and log canonical centers
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1515
EP - 1531
AB - Let $X$ be a projective Frobenius split variety with a fixed Frobenius splitting $\theta $. In this paper we give a sharp uniform bound on the number of subvarieties of $X$ which are compatibly Frobenius split with $\theta $. Similarly, we give a bound on the number of prime $F$-ideals of an $F$-finite $F$-pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.
LA - eng
KW - Frobenius split; compatibly Frobenius split subvariety; log canonical center; F-ideal; -ideal
UR - http://eudml.org/doc/116312
ER -

References

top
  1. F. Ambro, Basic properties of log canonical centers Zbl1221.14004
  2. F. Ambro, The locus of log canonical singularities Zbl1221.14004
  3. F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), 220-239 Zbl1081.14021MR1993751
  4. M. Brion, S. Kumar, Frobenius splitting methods in geometry and representation theory, 231 (2005), Birkhäuser Boston Inc., Boston, MA Zbl1072.14066MR2107324
  5. D. Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
  6. F. Enescu, M. Hochster, The Frobenius structure of local cohomology, Algebra Number Theory 2 (2008), 721-754 Zbl1190.13003MR2460693
  7. D. Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), 553-585 Zbl1058.14003MR2044495
  8. O. Fujino, Introduction to the log minimal model program for log canonical pairs Zbl06543115
  9. O. Fujino, The indices of log canonical singularities, Amer. J. Math. 123 (2001), 229-253 Zbl1064.14001MR1828222
  10. S. Greco, C. Traverso, On seminormal schemes, Compositio Math. 40 (1980), 325-365 Zbl0412.14024MR571055
  11. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965) Zbl0135.39701MR199181
  12. R. Hartshorne, R. Speiser, Local cohomological dimension in characteristic p , Ann. of Math. (2) 105 (1977), 45-79 Zbl0362.14002MR441962
  13. S. Helmke, On Fujita’s conjecture, Duke math. J. 88 (1997), 201-216 Zbl0876.14004MR1455517
  14. Y. Kawamata, On Fujita’s freeness conjecture for 3 -folds and 4 -folds, Math. Ann. 308 (1997), 491-505 Zbl0909.14001MR1457742
  15. J. Kollár, S. Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
  16. S. Kumar, V. B. Mehta, Finiteness of the number of compatibly-split subvarieties Zbl1183.13006
  17. E. Kunz, On Noetherian rings of characteristic p , Amer. J. Math. 98 (1976), 999-1013 Zbl0341.13009MR432625
  18. R. Lazarsfeld, Positivity in algebraic geometry. I, 48 (2004), Springer-Verlag, Berlin Zbl1066.14021MR2095471
  19. R. Lazarsfeld, Positivity in algebraic geometry. II, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
  20. V. B. Mehta, A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), 27-40 Zbl0601.14043MR799251
  21. K. Schwede, Centers of F -purity Zbl1213.13014
  22. K. Schwede, F -adjunction Zbl1209.13013
  23. K. Schwede, Gluing schemes and a scheme without closed points, 386 (2005), American Mathematical Society, Providence, RI Zbl1216.14003MR2182775
  24. K. Schwede, K. Smith, Globally F -regular and log Fano varieties Zbl1193.13004
  25. R. Y. Sharp, Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure, Trans. Amer. Math. Soc. 359 (2007), 4237-4258 (electronic) Zbl1130.13002MR2309183
  26. K. E. Smith, Test ideals in local rings, Trans. Amer. Math. Soc. 347 (1995), 3453-3472 Zbl0849.13003MR1311917
  27. K. E. Smith, Vanishing, singularities and effective bounds via prime characteristic local algebra, 62 (1997), Amer. Math. Soc., Providence, RI Zbl0913.13004MR1492526
  28. K. E. Smith, Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553-572 Zbl0994.14012MR1786505
  29. R. G. Swan, On seminormality, J. Algebra 67 (1980), 210-229 Zbl0473.13001MR595029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.