Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions
Oto Havle; Vít Dolejší; Miloslav Feistauer
Applications of Mathematics (2010)
- Volume: 55, Issue: 5, page 353-372
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHavle, Oto, Dolejší, Vít, and Feistauer, Miloslav. "Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions." Applications of Mathematics 55.5 (2010): 353-372. <http://eudml.org/doc/116467>.
@article{Havle2010,
abstract = {The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolejší, M. Feistauer, Numer. Funct. Anal. Optim. 26 (2005), 349–383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered.},
author = {Havle, Oto, Dolejší, Vít, Feistauer, Miloslav},
journal = {Applications of Mathematics},
keywords = {nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming meshes; NIPG; SIPG; IIPG versions; error estimate; space semidiscretization; nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming mesh; NIPG version; SIPG version; IIPG version; error estimate; space semidiscretization},
language = {eng},
number = {5},
pages = {353-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions},
url = {http://eudml.org/doc/116467},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Havle, Oto
AU - Dolejší, Vít
AU - Feistauer, Miloslav
TI - Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 5
SP - 353
EP - 372
AB - The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolejší, M. Feistauer, Numer. Funct. Anal. Optim. 26 (2005), 349–383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered.
LA - eng
KW - nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming meshes; NIPG; SIPG; IIPG versions; error estimate; space semidiscretization; nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming mesh; NIPG version; SIPG version; IIPG version; error estimate; space semidiscretization
UR - http://eudml.org/doc/116467
ER -
References
top- Arnold, D. N., 10.1137/0719052, SIAM J. Numer. Anal. 19 (1982), 742-760. (1982) Zbl0482.65060MR0664882DOI10.1137/0719052
- Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
- Ciarlet, P. G., The Finite Elements Method for Elliptic Problems, North-Holland Amsterdam-New York-Oxford (1978). (1978) MR0520174
- Cockburn, B., 10.1007/978-3-662-03882-6_2, In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., Vol. 9 T. J. Barth, H. Deconinck Springer Berlin (1999), 69-224. (1999) Zbl0937.76049MR1712278DOI10.1007/978-3-662-03882-6_2
- Cockburn, B., Karniadakis, G. E., Shu, C.-W., eds., Discontinuous Galerkin Methods, Springer Berlin (2000). (2000) Zbl0989.76045MR1842160
- Dawson, C. N., Sun, S., Wheeler, M. F., 10.1016/j.cma.2003.12.059, Comput. Methods Appl. Mech. Eng. 193 (2004), 2565-2580. (2004) Zbl1067.76565MR2055253DOI10.1016/j.cma.2003.12.059
- Dolejší, V., Feistauer, M., 10.1081/NFA-200067298, Numer. Funct. Anal. Optimization 26 (2005), 349-383. (2005) MR2153838DOI10.1081/NFA-200067298
- Dolejší, V., Feistauer, M., Hozman, J., 10.1016/j.cma.2006.09.025, Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827. (2007) MR2325393DOI10.1016/j.cma.2006.09.025
- Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V., 10.1093/imanum/drm023, IMA J. Numer. Anal. 28 (2008), 496-521. (2008) MR2433210DOI10.1093/imanum/drm023
- Dolejší, V., Feistauer, M., Sobotíková, V., 10.1016/j.cma.2004.07.017, Comput. Methods Appl. Mech. Eng. 194 (2005), 2709-2733. (2005) MR2136396DOI10.1016/j.cma.2004.07.017
- Feistauer, M., Optimal error estimates in the {DGFEM} for nonlinear convection-diffusion problems, In: Numerical Mathematics and Advanced Applications, ENUMATH 2007 K. Kunisch, G. Of, O. Steinbach Springer Heidelberg (2008), 323-330. (2008) MR2537215
- Feistauer, M., Kučera, V., Analysis of the DGFEM for nonlinear convection-diffusion problems, ETNA, Electron. Trans. Numer. Anal. 32 (2008), 33-48. (2008) MR2537215
- Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V., An optimal error estimates for the discontinuous Galerkin approximation of a nonlinear nonstationary convection-diffusion problem on nonconforming meshes, M2AN, Math. Model. Numer. Anal Submitted.
- Feistauer, M., Švadlenka, K., 10.1515/156939504323074504, J. Numer. Math. 12 (2004), 97-117. (2004) MR2062581DOI10.1515/156939504323074504
- Houston, P., Robson, J., Süli, E., 10.1093/imanum/dri014, IMA J. Numer. Anal. 25 (2005), 726-749. (2005) MR2170521DOI10.1093/imanum/dri014
- Houston, P., Schwab, C., Süli, E., 10.1137/S0036142900374111, SIAM J. Numer. Anal. 39 (2002), 2133-2163. (2002) MR1897953DOI10.1137/S0036142900374111
- Kufner, A., John, O., Fučík, S., Function Spaces, Academia Prague (1977). (1977) MR0482102
- Nečas, J., Les Méthodes Directes en Thèorie des Equations Elliptiques, Academia Prague (1967). (1967) MR0227584
- Rivière, B., Wheeler, M. F., 10.1007/978-3-642-59721-3_17, In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng., Vol. 11 B. Cockburn, G. E. Karniadakis, C.-W. Schu Springer Berlin (2000), 231-244. (2000) MR1842177DOI10.1007/978-3-642-59721-3_17
- Rivière, B., Wheeler, M. F., Girault, V., 10.1023/A:1011591328604, Comput. Geosci. 3 (1999), 337-360. (1999) MR1750076DOI10.1023/A:1011591328604
- Roos, H.-G., Zarin, H., 10.1007/978-3-642-19014-8_12, In: CISC 2002, Lect. Notes Comput. Sci. Eng., Vol. 35 E. Bensch Springer Berlin (2003), 246-267. (2003) Zbl1043.65130MR2070794DOI10.1007/978-3-642-19014-8_12
- Roos, H.-G., Zarin, H., 10.1002/num.20241, Numer. Methods Partial Differential Equations 23 (2007), 1560-1576. (2007) Zbl1145.65100MR2355174DOI10.1002/num.20241
- Roubíček, T., Nonlinear Partial Differential Equations with Applications, Birkhäuser Basel-Boston-Berlin (2005). (2005) MR2176645
- Sun, S., Wheeler, M. F., 10.1137/S003614290241708X, SIAM J. Numer. Anal. 43 (2005), 195-219. (2005) Zbl1086.76043MR2177141DOI10.1137/S003614290241708X
- Wheeler, M. F., 10.1137/0715010, SIAM J. Numer. Anal. 15 (1978), 152-161. (1978) Zbl0384.65058MR0471383DOI10.1137/0715010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.