Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions

Oto Havle; Vít Dolejší; Miloslav Feistauer

Applications of Mathematics (2010)

  • Volume: 55, Issue: 5, page 353-372
  • ISSN: 0862-7940

Abstract

top
The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolejší, M. Feistauer, Numer. Funct. Anal. Optim. 26 (2005), 349–383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered.

How to cite

top

Havle, Oto, Dolejší, Vít, and Feistauer, Miloslav. "Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions." Applications of Mathematics 55.5 (2010): 353-372. <http://eudml.org/doc/116467>.

@article{Havle2010,
abstract = {The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolejší, M. Feistauer, Numer. Funct. Anal. Optim. 26 (2005), 349–383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered.},
author = {Havle, Oto, Dolejší, Vít, Feistauer, Miloslav},
journal = {Applications of Mathematics},
keywords = {nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming meshes; NIPG; SIPG; IIPG versions; error estimate; space semidiscretization; nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming mesh; NIPG version; SIPG version; IIPG version; error estimate; space semidiscretization},
language = {eng},
number = {5},
pages = {353-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions},
url = {http://eudml.org/doc/116467},
volume = {55},
year = {2010},
}

TY - JOUR
AU - Havle, Oto
AU - Dolejší, Vít
AU - Feistauer, Miloslav
TI - Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 5
SP - 353
EP - 372
AB - The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolejší, M. Feistauer, Numer. Funct. Anal. Optim. 26 (2005), 349–383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered.
LA - eng
KW - nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming meshes; NIPG; SIPG; IIPG versions; error estimate; space semidiscretization; nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming mesh; NIPG version; SIPG version; IIPG version; error estimate; space semidiscretization
UR - http://eudml.org/doc/116467
ER -

References

top
  1. Arnold, D. N., 10.1137/0719052, SIAM J. Numer. Anal. 19 (1982), 742-760. (1982) Zbl0482.65060MR0664882DOI10.1137/0719052
  2. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
  3. Ciarlet, P. G., The Finite Elements Method for Elliptic Problems, North-Holland Amsterdam-New York-Oxford (1978). (1978) MR0520174
  4. Cockburn, B., 10.1007/978-3-662-03882-6_2, In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., Vol. 9 T. J. Barth, H. Deconinck Springer Berlin (1999), 69-224. (1999) Zbl0937.76049MR1712278DOI10.1007/978-3-662-03882-6_2
  5. Cockburn, B., Karniadakis, G. E., Shu, C.-W., eds., Discontinuous Galerkin Methods, Springer Berlin (2000). (2000) Zbl0989.76045MR1842160
  6. Dawson, C. N., Sun, S., Wheeler, M. F., 10.1016/j.cma.2003.12.059, Comput. Methods Appl. Mech. Eng. 193 (2004), 2565-2580. (2004) Zbl1067.76565MR2055253DOI10.1016/j.cma.2003.12.059
  7. Dolejší, V., Feistauer, M., 10.1081/NFA-200067298, Numer. Funct. Anal. Optimization 26 (2005), 349-383. (2005) MR2153838DOI10.1081/NFA-200067298
  8. Dolejší, V., Feistauer, M., Hozman, J., 10.1016/j.cma.2006.09.025, Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827. (2007) MR2325393DOI10.1016/j.cma.2006.09.025
  9. Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V., 10.1093/imanum/drm023, IMA J. Numer. Anal. 28 (2008), 496-521. (2008) MR2433210DOI10.1093/imanum/drm023
  10. Dolejší, V., Feistauer, M., Sobotíková, V., 10.1016/j.cma.2004.07.017, Comput. Methods Appl. Mech. Eng. 194 (2005), 2709-2733. (2005) MR2136396DOI10.1016/j.cma.2004.07.017
  11. Feistauer, M., Optimal error estimates in the {DGFEM} for nonlinear convection-diffusion problems, In: Numerical Mathematics and Advanced Applications, ENUMATH 2007 K. Kunisch, G. Of, O. Steinbach Springer Heidelberg (2008), 323-330. (2008) MR2537215
  12. Feistauer, M., Kučera, V., Analysis of the DGFEM for nonlinear convection-diffusion problems, ETNA, Electron. Trans. Numer. Anal. 32 (2008), 33-48. (2008) MR2537215
  13. Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V., An optimal L ( L 2 ) error estimates for the discontinuous Galerkin approximation of a nonlinear nonstationary convection-diffusion problem on nonconforming meshes, M2AN, Math. Model. Numer. Anal Submitted. 
  14. Feistauer, M., Švadlenka, K., 10.1515/156939504323074504, J. Numer. Math. 12 (2004), 97-117. (2004) MR2062581DOI10.1515/156939504323074504
  15. Houston, P., Robson, J., Süli, E., 10.1093/imanum/dri014, IMA J. Numer. Anal. 25 (2005), 726-749. (2005) MR2170521DOI10.1093/imanum/dri014
  16. Houston, P., Schwab, C., Süli, E., 10.1137/S0036142900374111, SIAM J. Numer. Anal. 39 (2002), 2133-2163. (2002) MR1897953DOI10.1137/S0036142900374111
  17. Kufner, A., John, O., Fučík, S., Function Spaces, Academia Prague (1977). (1977) MR0482102
  18. Nečas, J., Les Méthodes Directes en Thèorie des Equations Elliptiques, Academia Prague (1967). (1967) MR0227584
  19. Rivière, B., Wheeler, M. F., 10.1007/978-3-642-59721-3_17, In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng., Vol. 11 B. Cockburn, G. E. Karniadakis, C.-W. Schu Springer Berlin (2000), 231-244. (2000) MR1842177DOI10.1007/978-3-642-59721-3_17
  20. Rivière, B., Wheeler, M. F., Girault, V., 10.1023/A:1011591328604, Comput. Geosci. 3 (1999), 337-360. (1999) MR1750076DOI10.1023/A:1011591328604
  21. Roos, H.-G., Zarin, H., 10.1007/978-3-642-19014-8_12, In: CISC 2002, Lect. Notes Comput. Sci. Eng., Vol. 35 E. Bensch Springer Berlin (2003), 246-267. (2003) Zbl1043.65130MR2070794DOI10.1007/978-3-642-19014-8_12
  22. Roos, H.-G., Zarin, H., 10.1002/num.20241, Numer. Methods Partial Differential Equations 23 (2007), 1560-1576. (2007) Zbl1145.65100MR2355174DOI10.1002/num.20241
  23. Roubíček, T., Nonlinear Partial Differential Equations with Applications, Birkhäuser Basel-Boston-Berlin (2005). (2005) MR2176645
  24. Sun, S., Wheeler, M. F., 10.1137/S003614290241708X, SIAM J. Numer. Anal. 43 (2005), 195-219. (2005) Zbl1086.76043MR2177141DOI10.1137/S003614290241708X
  25. Wheeler, M. F., 10.1137/0715010, SIAM J. Numer. Anal. 15 (1978), 152-161. (1978) Zbl0384.65058MR0471383DOI10.1137/0715010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.