A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow

J. Baranger; D. Sandri

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 2, page 331-345
  • ISSN: 0764-583X

How to cite

top

Baranger, J., and Sandri, D.. "A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.2 (1992): 331-345. <http://eudml.org/doc/193666>.

@article{Baranger1992,
author = {Baranger, J., Sandri, D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {three fields formulation; Stokes's problem; linear elasticity; finite element approximation; viscoelastic fluids},
language = {eng},
number = {2},
pages = {331-345},
publisher = {Dunod},
title = {A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow},
url = {http://eudml.org/doc/193666},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Baranger, J.
AU - Sandri, D.
TI - A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 2
SP - 331
EP - 345
LA - eng
KW - three fields formulation; Stokes's problem; linear elasticity; finite element approximation; viscoelastic fluids
UR - http://eudml.org/doc/193666
ER -

References

top
  1. [1] D. N. ARNOLD, J. DOUGLAS and C. P. GUPTA, A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity, Numer. Math., 45, 1-22 (1984). Zbl0558.73066MR761879
  2. [2] I. BABUSKA, Error-bounds for Finite Element Method, Numer. Math., 16, 322-333 (1971). Zbl0214.42001MR288971
  3. [3] F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Model. Math. Anal. Numér., 8, 129-151 (1974). Zbl0338.90047MR365287
  4. [4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland (1978). Zbl0383.65058MR520174
  5. [5] P. CLEMENT, Approximation by finite elements using local regularization, RAIRO Modél. Math. Anal. Numér., 8, 77-84 (1975). Zbl0368.65008MR400739
  6. [6] J. DOUGLAS and J. WANG, An absolutely stabilized finite element method for the Stokes problem, quoted in [12]. Zbl0669.76051
  7. [7] M. FORTIN and A. FORTIN, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989). Zbl0672.76010
  8. [8] M. FORTIN and R. PIERRE, On the convergence of the mixed method of Crochetand Marchal for viscoelastic flows, to appear. Zbl0692.76002MR1016647
  9. [9] L. P. FRANCA, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, 259-273 (1989). Zbl0688.73044MR1030385
  10. [10] L. P. FRANCA and T. J. R. HUGHES, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, 89-129 (1988). Zbl0629.73053MR953593
  11. [11] L. P. FRANCA, R. STENBERG, Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity, to appear in Appl. Mech. Rev. Zbl0749.73076MR1037580
  12. [12] L.P. FRANCA and R. STENBERG, Error analysis of some Galerkin-least-squares methods for the elasticity equations, Rapport INRIA, n° 1054 (1989). Zbl0759.73055
  13. [13] V. GIRAULT and P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Theory and algorithms, Springer Berlin (1978). Zbl0585.65077MR851383
  14. [14] J. M. MARCHAL and M. J. CROCHET, A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987). Zbl0637.76009
  15. [15] L. R. SCOTT and M. VOGELIUS, Norm estimates for a maximal right inverse ofthe divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19, 111-143 (1985). Zbl0608.65013MR813691
  16. [16] R. STENBERG, A Family of Mixed Finite Elements for the Elasticity Problem, Num. Math., 53, 513-538 (1988). Zbl0632.73063MR954768
  17. [17] R. STENBERG, Error Analysis of some Finite Element Methods for the Stokes Problem, to appear. Zbl0702.65095MR1010601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.