A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow
- Volume: 26, Issue: 2, page 331-345
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBaranger, J., and Sandri, D.. "A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.2 (1992): 331-345. <http://eudml.org/doc/193666>.
@article{Baranger1992,
author = {Baranger, J., Sandri, D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {three fields formulation; Stokes's problem; linear elasticity; finite element approximation; viscoelastic fluids},
language = {eng},
number = {2},
pages = {331-345},
publisher = {Dunod},
title = {A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow},
url = {http://eudml.org/doc/193666},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Baranger, J.
AU - Sandri, D.
TI - A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 2
SP - 331
EP - 345
LA - eng
KW - three fields formulation; Stokes's problem; linear elasticity; finite element approximation; viscoelastic fluids
UR - http://eudml.org/doc/193666
ER -
References
top- [1] D. N. ARNOLD, J. DOUGLAS and C. P. GUPTA, A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity, Numer. Math., 45, 1-22 (1984). Zbl0558.73066MR761879
- [2] I. BABUSKA, Error-bounds for Finite Element Method, Numer. Math., 16, 322-333 (1971). Zbl0214.42001MR288971
- [3] F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Model. Math. Anal. Numér., 8, 129-151 (1974). Zbl0338.90047MR365287
- [4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland (1978). Zbl0383.65058MR520174
- [5] P. CLEMENT, Approximation by finite elements using local regularization, RAIRO Modél. Math. Anal. Numér., 8, 77-84 (1975). Zbl0368.65008MR400739
- [6] J. DOUGLAS and J. WANG, An absolutely stabilized finite element method for the Stokes problem, quoted in [12]. Zbl0669.76051
- [7] M. FORTIN and A. FORTIN, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989). Zbl0672.76010
- [8] M. FORTIN and R. PIERRE, On the convergence of the mixed method of Crochetand Marchal for viscoelastic flows, to appear. Zbl0692.76002MR1016647
- [9] L. P. FRANCA, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, 259-273 (1989). Zbl0688.73044MR1030385
- [10] L. P. FRANCA and T. J. R. HUGHES, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, 89-129 (1988). Zbl0629.73053MR953593
- [11] L. P. FRANCA, R. STENBERG, Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity, to appear in Appl. Mech. Rev. Zbl0749.73076MR1037580
- [12] L.P. FRANCA and R. STENBERG, Error analysis of some Galerkin-least-squares methods for the elasticity equations, Rapport INRIA, n° 1054 (1989). Zbl0759.73055
- [13] V. GIRAULT and P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Theory and algorithms, Springer Berlin (1978). Zbl0585.65077MR851383
- [14] J. M. MARCHAL and M. J. CROCHET, A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987). Zbl0637.76009
- [15] L. R. SCOTT and M. VOGELIUS, Norm estimates for a maximal right inverse ofthe divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19, 111-143 (1985). Zbl0608.65013MR813691
- [16] R. STENBERG, A Family of Mixed Finite Elements for the Elasticity Problem, Num. Math., 53, 513-538 (1988). Zbl0632.73063MR954768
- [17] R. STENBERG, Error Analysis of some Finite Element Methods for the Stokes Problem, to appear. Zbl0702.65095MR1010601
Citations in EuDML Documents
top- D. Sandri, Analyse d'une formulation à trois champs du problème de Stokes
- M. Farhloul, A. Zine, A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem
- Aihui Zhou, Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.