Destabilizing effect of unilateral conditions in reaction-diffusion systems

Milan Kučera; Jiří Neustupa

Commentationes Mathematicae Universitatis Carolinae (1986)

  • Volume: 027, Issue: 1, page 171-187
  • ISSN: 0010-2628

How to cite

top

Kučera, Milan, and Neustupa, Jiří. "Destabilizing effect of unilateral conditions in reaction-diffusion systems." Commentationes Mathematicae Universitatis Carolinae 027.1 (1986): 171-187. <http://eudml.org/doc/17447>.

@article{Kučera1986,
author = {Kučera, Milan, Neustupa, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {unilateral conditions; eigenvalues; Stationary solutions; reaction- diffusion systems},
language = {eng},
number = {1},
pages = {171-187},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Destabilizing effect of unilateral conditions in reaction-diffusion systems},
url = {http://eudml.org/doc/17447},
volume = {027},
year = {1986},
}

TY - JOUR
AU - Kučera, Milan
AU - Neustupa, Jiří
TI - Destabilizing effect of unilateral conditions in reaction-diffusion systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1986
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 027
IS - 1
SP - 171
EP - 187
LA - eng
KW - unilateral conditions; eigenvalues; Stationary solutions; reaction- diffusion systems
UR - http://eudml.org/doc/17447
ER -

References

top
  1. E. N. DANCER, On the structure of solutions of non-linear eigenvalue problems, Ind. Univ. Math. J. 23 (1974), 1069-1076. (1974) Zbl0276.47051MR0348567
  2. G. DUVANT J.-L. LIONS, Les inéquations en méchanique et en physique, Dunod, Paris 1972. (1972) MR0464857
  3. S. FUČÍK A. KUFNER, Nonlinear differencial equations, Elsevier, Scient. Publ. Comp., Amsterdam - Oxford - New York 1980. (1980) MR0558764
  4. P. DRÁBEK M. KUČERA M. MÍKOVÁ, Bifurcation points of reaction-diffusion systems with unilateral conditions, Czechoslovak Math. J. 35 (1985), 639-660. (1985) MR0809047
  5. P. DRÁBEK M. KUČERA, Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions, Czechoslovak Math. J. 36 (1986). (1986) MR0822872
  6. P. DRÁBEK M. KUČERA, Reaction-diffusion systems: Destabilizing effect of unilateral conditions, To appear. MR0969497
  7. M. KUČERA, A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory, Čas. pěst. mat. 104 (1979), 389-411. (1979) MR0553173
  8. M. KUČERA, A new method for obtaining eigenvalues of variational inequalities. Operators with multiple eigenvalues, Czechoslovak Math. J. 32 (107) (1982), 197-207. (1982) MR0654056
  9. M. KUČERA, Bifurcation points of inequalities of reactiondiffusion type, To appear. 
  10. M. MIMURA Y. NISHIURA M. YAMAGUTI, Some diffusive prey and predator systems and their bifurcation problems, Ann. New York Acad. Sci 316 (1979), 490-510. (1979) MR0556853
  11. Y. NISHIURA, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal. Vol. 13, No. 4, July 1982, 555-593. (1982) Zbl0505.76103MR0661590

Citations in EuDML Documents

top
  1. Jiří Neustupa, A principle of linearization in theory of stability of solutions of variational inequalities
  2. Pavel Drábek, Milan Kučera, Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions
  3. Vítězslav Babický, Destabilization for quasivariational inequalities of reaction-diffusion type
  4. Pavel Drábek, Milan Kučera, Marta Míková, Bifurcation points of reaction-diffusion systems with unilateral conditions
  5. Jan Eisner, Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.