Invariance of the Fredholm radius of the Neumann operator

Dagmar Medková

Časopis pro pěstování matematiky (1990)

  • Volume: 115, Issue: 2, page 147-164
  • ISSN: 0528-2195

How to cite

top

Medková, Dagmar. "Invariance of the Fredholm radius of the Neumann operator." Časopis pro pěstování matematiky 115.2 (1990): 147-164. <http://eudml.org/doc/19200>.

@article{Medková1990,
author = {Medková, Dagmar},
journal = {Časopis pro pěstování matematiky},
keywords = {Neumann operator; invariant; conformal deformations; Fredholm radius},
language = {eng},
number = {2},
pages = {147-164},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Invariance of the Fredholm radius of the Neumann operator},
url = {http://eudml.org/doc/19200},
volume = {115},
year = {1990},
}

TY - JOUR
AU - Medková, Dagmar
TI - Invariance of the Fredholm radius of the Neumann operator
JO - Časopis pro pěstování matematiky
PY - 1990
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 115
IS - 2
SP - 147
EP - 164
LA - eng
KW - Neumann operator; invariant; conformal deformations; Fredholm radius
UR - http://eudml.org/doc/19200
ER -

References

top
  1. T. S. Angell R. E. Kleinman J. Král, Double layer potentials on boundaries with corners and edges, Comment. Math. Univ. Carolinae 27 (1989). (1989) MR0981880
  2. T. S. Angell R. E. Kleinman J. Král, Layer potentials on boundaries with corners and edges, Časopis pěst. mat. 113 (1988), 387-402. (1988) MR0981880
  3. E. De Giorgi, Su una teoria generále della misura (r - l)-dimensionale in uno spazi ad r dimensioni, Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191 - 213. (1954) MR0062214
  4. E. De Giorgi, Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazi ad r dimensioni, Ricerche Mat. 4 (1955), 95-113. (1955) MR0074499
  5. M. Dont E. Dontová, Invariance of the Fredholm radius of an operator in potential theory, Časopis pěst. mat. 112 (1987), 269-283. (1987) MR0905974
  6. H. Federer, A note on the Gauss-Green theorem, Proc. Amer. Math. Soc. 9 (1958), 447-451. (1958) Zbl0087.27302MR0095245
  7. H. Federer, Geometric measure theory, Springer-Verlag 1969. (1969) Zbl0176.00801MR0257325
  8. H. Federer, The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1945), 44-76. (1945) Zbl0060.14102MR0013786
  9. J. Král, Integral Operators in Potential Theory, Lecture Notes in Mathematics 823, Springer-Verlag, Berlin 1980. (1980) MR0590244
  10. J. Král, Flows of heat and the Fourier problem, Czechoslovak Math. J. 20 (95) (1970), 556-597. (1970) MR0271554
  11. J. Král, Note on sets whose characteristic functions have signed measure for their partial derivatives, (Czech). Časopis pěst. mat. 86 (1961), 178-194. (1961) MR0136697
  12. J. Král, The Fredholm method in potential theory, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503
  13. J. Král, The Fredholm radius of an operator in potential theory, Czechoslovak Math. J. 15 (90) (1965), 565-588. (1965) MR0190363
  14. J. Král W. Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace Matematiky 31 (1986), 293 - 308. (1986) MR0854323
  15. M. Ohtsuka, Reading of De Giorgi's papers, Gakushuin University 1980. (1980) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.