Invariance of the Fredholm radius of an operator in potential theory

Miroslav Dont; Eva Dontová

Časopis pro pěstování matematiky (1987)

  • Volume: 112, Issue: 3, page 269-283
  • ISSN: 0528-2195

How to cite

top

Dont, Miroslav, and Dontová, Eva. "Invariance of the Fredholm radius of an operator in potential theory." Časopis pro pěstování matematiky 112.3 (1987): 269-283. <http://eudml.org/doc/21689>.

@article{Dont1987,
author = {Dont, Miroslav, Dontová, Eva},
journal = {Časopis pro pěstování matematiky},
keywords = {Dirichlet problem; method of integral equations; non-smooth regions; Fredholm radius; Jordan domain in the plane; conformal mapping},
language = {eng},
number = {3},
pages = {269-283},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Invariance of the Fredholm radius of an operator in potential theory},
url = {http://eudml.org/doc/21689},
volume = {112},
year = {1987},
}

TY - JOUR
AU - Dont, Miroslav
AU - Dontová, Eva
TI - Invariance of the Fredholm radius of an operator in potential theory
JO - Časopis pro pěstování matematiky
PY - 1987
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 112
IS - 3
SP - 269
EP - 283
LA - eng
KW - Dirichlet problem; method of integral equations; non-smooth regions; Fredholm radius; Jordan domain in the plane; conformal mapping
UR - http://eudml.org/doc/21689
ER -

References

top
  1. N. Bourbaki, Integration, (Russian), Nauka, Moskva 1967. (1967) Zbl0156.06001MR0223524
  2. M. Dont, Non-tangential limits of the double layer potentials, Časopis pěst. mat. 97 (1972), 231-258. (1972) Zbl0237.31012MR0444975
  3. J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, Berlin 1984. (1984) Zbl0549.31001MR0731258
  4. J. Král, Integral operators in potential theory, Lecture Notes in Math. 823. Springer-Verlag, Berlin 1980. (1980) MR0590244
  5. J. Král, The Fredholm method in potential theory, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503
  6. J. Král, On the logarithmic potential of the double distribution, Czechoslovak Math. J. 14 (89) 1964, 306-321. (1964) MR0180690
  7. J. Král, The Fredholm radius of an operator in potential theory, Czechoslovak Math. J. 15(90) 1965, 565-588. (1965) MR0190363
  8. J. Král, Potentials and boundary value problems, 5. Tagung über Probleme und Methoden der Math. Physik, Wiss. Schriftenreihe der TH Karl-Marx-Stadt 1975, Hft. 3, 484-500. (1975) MR0430272
  9. J. Král, Theory of potential I, (Czech). Stát. pedag. nakl. Praha, Praha 1965. (1965) 
  10. J. Král I. Netuka J. Veselý, Theory of potential II, (Czech). Stát. pedag. nak. Praha 1972. (1972) 
  11. J. Mařík, Note on the length of the Jordan curve, (Czech). Časopis pěst. mat. 83 (1958), 91-96. (1958) 
  12. J. Radon, Über Randwertaufgaben beim logarithmischen Potential, Sitzber. Akad. Wiss. Wien 128 (1919), 1123-1167. (1919) Zbl47.0457.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.