Finite volume box schemes on triangular meshes
- Volume: 32, Issue: 5, page 631-649
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCourbet, B., and Croisille, J. P.. "Finite volume box schemes on triangular meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.5 (1998): 631-649. <http://eudml.org/doc/193889>.
@article{Courbet1998,
author = {Courbet, B., Croisille, J. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume box schemes; triangular meshes; mixed finite element method; finite element box scheme; error estimate; Poisson problem; numerical results},
language = {eng},
number = {5},
pages = {631-649},
publisher = {Dunod},
title = {Finite volume box schemes on triangular meshes},
url = {http://eudml.org/doc/193889},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Courbet, B.
AU - Croisille, J. P.
TI - Finite volume box schemes on triangular meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 5
SP - 631
EP - 649
LA - eng
KW - finite volume box schemes; triangular meshes; mixed finite element method; finite element box scheme; error estimate; Poisson problem; numerical results
UR - http://eudml.org/doc/193889
ER -
References
top- [1] R. E. BANK, D. J. ROSE, Some error estimates for the box method, SIAM J. Numer. Anal, 24, 4, 1987, 777-787. Zbl0634.65105MR899703
- [2] J. BARANGER, J. F. MAÎTRE, F. OUDIN, Connection between finite volume and mixed finite element methods, Math. Model. and Numer. Anal. (M2AN), to appear. Zbl0857.65116MR1399499
- [3] D. BRAESS, Finite Elemente, Springer Lehrbuch, 1991. Zbl0754.65084
- [4] S. C. BRENNER, L. R. SCOTT, The mathematical theory of finite element methods, Texts in Applied Mathematics 15, Springer. Zbl0804.65101
- [5] F. BREZZI, M. FORTIN, Mixed and Hybrid Finite Element Methods, Springer Series in Comp. Math., 15, Springer Verlag, New-York, 1991. Zbl0788.73002MR1115205
- [6] F. CASIER, H. DECONNINCK, C. HIRSCH, A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations, AIAA-83-0126, 1983.
- [7] J. J. CHATTOT, S. MALET, A "box-scheme" for the Euler equations, Lecture Notes in Math., 1270, Springer-Verlag, 1986, 52-63. Zbl0626.65088MR910106
- [8] B. COURBET, Schémas boîte en réseau triangulaire, ONERA, 1992, unpublished.
- [9] B. COURBET, Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale, n° 4, 1990, 21-46. Zbl0708.76105
- [10] B. COURBET, Étude d'une famille de schémas boîtes à deux points et application à la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale, n° 5, 1991, 31-44.
- [11] M. CROUZEIX, P. A. RAVIART, Conforming and non conforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O. 7, 1973, R-3, 33-76. Zbl0302.65087MR343661
- [12] P. EMONOT, Méthodes de volumes-éléments-finis: Application aux équations de Navier-Stokes et résultats de convergence, Thèse de l'Université de Lyon 1, France 1992.
- [13] G. FAIRWEATHER, R. D. SAYLOR, The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J. Sci. Stat. Comput., 12, 1, 1991, 127-144. Zbl0722.65062MR1078800
- [14] M. FARHLOUL, M. FORTIN, A new mixed finite element for the Stokes and elasticity problems, SIAM J. Numer. Anal., 30, 4, 1993, 971-990. Zbl0777.76051MR1231323
- [15] W. HACKBUSCH, On first and second order box schemes, Computing, 41, 1989, 277-296. Zbl0649.65052MR993825
- [16] C. JOHNSON, Adaptive finite element method for diffusion and convection problems, Comp. Meth. in Appl. Mech. Eng., 82, 1990, 301-322. Zbl0717.76078MR1077659
- [17] H. B. KELLER, A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard éd., Academic Press, New-York, 1971, 327-350. Zbl0243.65060MR277129
- [18] P. C. MEEK, J. NORBURY, Nonlinear moving boundary problems and a Keller box scheme, SIAM J. Numer. Anal., 21, 5, 1984, 883-893. Zbl0558.65087MR760623
- [19] R. A. NICOLAIDES, The covolume approach to Computing incompressible flows, Incompressible Comp. Fluid Dynamics, M. P. Gunzberger, R. A. Nicolaides Ed., 1993, Cambridge Univ. Press. Zbl1189.76392
- [20] R. A. NICOLAIDES, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29, 1, 1992, 32-56. Zbl0745.65063MR1149083
- [21] R. A. NICOLAIDES, X. WU, Covolume solutions of three dimensional div-curl equations, ICASE Report 95-4. Zbl0889.35006
- [22] B. J. NOYE, Some three-level finite difference methods for simulating advection in fluids, Computers and Fluids, 19, 1991, 119-140. Zbl0721.76053MR1087166
- [23] P. A. RAVIART, J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Math, 606, Springer-Verlag, 1977, 292-315. Zbl0362.65089MR483555
- [24] S. F. WORNOM, Application of compact difference schemes to the conservative Euler equations for one-dimensional flow, NASA TM 8326. Zbl0563.76023
- [25] S. F. WORNOM, A two-point difference scheme for Computing steady-state solutions to the conservative one-dimensional Euler equations, Computers and Fluids, 12, 1, 1984, 11-30. Zbl0563.76023
- [26] S. F. WORNOM, M. M. HAFEZ, Implicit conservative schemes for the Euler equations, AIAA J., 24, 2, 1986, 215-233. Zbl0591.76108MR825091
Citations in EuDML Documents
top- Yves Coudière, Philippe Villedieu, Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes
- Yves Coudière, Philippe Villedieu, Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes
- Linda El Alaoui, Alexandre Ern, Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods
- Jean-Pierre Croisille, Finite volume box schemes and mixed methods
- Linda El Alaoui, Alexandre Ern, Residual and hierarchical error estimates for nonconforming mixed finite element methods
- Jean-Pierre Croisille, Finite Volume Box Schemes and Mixed Methods
- Kwang Y. Kim, New mixed finite volume methods for second order eliptic problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.