Finite volume box schemes on triangular meshes

B. Courbet; J. P. Croisille

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 5, page 631-649
  • ISSN: 0764-583X

How to cite

top

Courbet, B., and Croisille, J. P.. "Finite volume box schemes on triangular meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.5 (1998): 631-649. <http://eudml.org/doc/193889>.

@article{Courbet1998,
author = {Courbet, B., Croisille, J. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume box schemes; triangular meshes; mixed finite element method; finite element box scheme; error estimate; Poisson problem; numerical results},
language = {eng},
number = {5},
pages = {631-649},
publisher = {Dunod},
title = {Finite volume box schemes on triangular meshes},
url = {http://eudml.org/doc/193889},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Courbet, B.
AU - Croisille, J. P.
TI - Finite volume box schemes on triangular meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 5
SP - 631
EP - 649
LA - eng
KW - finite volume box schemes; triangular meshes; mixed finite element method; finite element box scheme; error estimate; Poisson problem; numerical results
UR - http://eudml.org/doc/193889
ER -

References

top
  1. [1] R. E. BANK, D. J. ROSE, Some error estimates for the box method, SIAM J. Numer. Anal, 24, 4, 1987, 777-787. Zbl0634.65105MR899703
  2. [2] J. BARANGER, J. F. MAÎTRE, F. OUDIN, Connection between finite volume and mixed finite element methods, Math. Model. and Numer. Anal. (M2AN), to appear. Zbl0857.65116MR1399499
  3. [3] D. BRAESS, Finite Elemente, Springer Lehrbuch, 1991. Zbl0754.65084
  4. [4] S. C. BRENNER, L. R. SCOTT, The mathematical theory of finite element methods, Texts in Applied Mathematics 15, Springer. Zbl0804.65101
  5. [5] F. BREZZI, M. FORTIN, Mixed and Hybrid Finite Element Methods, Springer Series in Comp. Math., 15, Springer Verlag, New-York, 1991. Zbl0788.73002MR1115205
  6. [6] F. CASIER, H. DECONNINCK, C. HIRSCH, A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations, AIAA-83-0126, 1983. 
  7. [7] J. J. CHATTOT, S. MALET, A "box-scheme" for the Euler equations, Lecture Notes in Math., 1270, Springer-Verlag, 1986, 52-63. Zbl0626.65088MR910106
  8. [8] B. COURBET, Schémas boîte en réseau triangulaire, ONERA, 1992, unpublished. 
  9. [9] B. COURBET, Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale, n° 4, 1990, 21-46. Zbl0708.76105
  10. [10] B. COURBET, Étude d'une famille de schémas boîtes à deux points et application à la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale, n° 5, 1991, 31-44. 
  11. [11] M. CROUZEIX, P. A. RAVIART, Conforming and non conforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O. 7, 1973, R-3, 33-76. Zbl0302.65087MR343661
  12. [12] P. EMONOT, Méthodes de volumes-éléments-finis: Application aux équations de Navier-Stokes et résultats de convergence, Thèse de l'Université de Lyon 1, France 1992. 
  13. [13] G. FAIRWEATHER, R. D. SAYLOR, The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J. Sci. Stat. Comput., 12, 1, 1991, 127-144. Zbl0722.65062MR1078800
  14. [14] M. FARHLOUL, M. FORTIN, A new mixed finite element for the Stokes and elasticity problems, SIAM J. Numer. Anal., 30, 4, 1993, 971-990. Zbl0777.76051MR1231323
  15. [15] W. HACKBUSCH, On first and second order box schemes, Computing, 41, 1989, 277-296. Zbl0649.65052MR993825
  16. [16] C. JOHNSON, Adaptive finite element method for diffusion and convection problems, Comp. Meth. in Appl. Mech. Eng., 82, 1990, 301-322. Zbl0717.76078MR1077659
  17. [17] H. B. KELLER, A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard éd., Academic Press, New-York, 1971, 327-350. Zbl0243.65060MR277129
  18. [18] P. C. MEEK, J. NORBURY, Nonlinear moving boundary problems and a Keller box scheme, SIAM J. Numer. Anal., 21, 5, 1984, 883-893. Zbl0558.65087MR760623
  19. [19] R. A. NICOLAIDES, The covolume approach to Computing incompressible flows, Incompressible Comp. Fluid Dynamics, M. P. Gunzberger, R. A. Nicolaides Ed., 1993, Cambridge Univ. Press. Zbl1189.76392
  20. [20] R. A. NICOLAIDES, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29, 1, 1992, 32-56. Zbl0745.65063MR1149083
  21. [21] R. A. NICOLAIDES, X. WU, Covolume solutions of three dimensional div-curl equations, ICASE Report 95-4. Zbl0889.35006
  22. [22] B. J. NOYE, Some three-level finite difference methods for simulating advection in fluids, Computers and Fluids, 19, 1991, 119-140. Zbl0721.76053MR1087166
  23. [23] P. A. RAVIART, J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Math, 606, Springer-Verlag, 1977, 292-315. Zbl0362.65089MR483555
  24. [24] S. F. WORNOM, Application of compact difference schemes to the conservative Euler equations for one-dimensional flow, NASA TM 8326. Zbl0563.76023
  25. [25] S. F. WORNOM, A two-point difference scheme for Computing steady-state solutions to the conservative one-dimensional Euler equations, Computers and Fluids, 12, 1, 1984, 11-30. Zbl0563.76023
  26. [26] S. F. WORNOM, M. M. HAFEZ, Implicit conservative schemes for the Euler equations, AIAA J., 24, 2, 1986, 215-233. Zbl0591.76108MR825091

Citations in EuDML Documents

top
  1. Yves Coudière, Philippe Villedieu, Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes
  2. Yves Coudière, Philippe Villedieu, Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes
  3. Linda El Alaoui, Alexandre Ern, Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods
  4. Jean-Pierre Croisille, Finite volume box schemes and mixed methods
  5. Jean-Pierre Croisille, Finite Volume Box Schemes and Mixed Methods
  6. Linda El Alaoui, Alexandre Ern, Residual and hierarchical error estimates for nonconforming mixed finite element methods
  7. Kwang Y. Kim, New mixed finite volume methods for second order eliptic problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.