Convergence of a finite volume scheme for an elliptic-hyperbolic system
- Volume: 30, Issue: 7, page 841-872
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVignal, M. H.. "Convergence of a finite volume scheme for an elliptic-hyperbolic system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.7 (1996): 841-872. <http://eudml.org/doc/193826>.
@article{Vignal1996,
author = {Vignal, M. H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {elliptic-hyperbolic system; diphasic flow in a porous medium; finite volume scheme; error estimates; stability; convergence},
language = {eng},
number = {7},
pages = {841-872},
publisher = {Dunod},
title = {Convergence of a finite volume scheme for an elliptic-hyperbolic system},
url = {http://eudml.org/doc/193826},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Vignal, M. H.
TI - Convergence of a finite volume scheme for an elliptic-hyperbolic system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 7
SP - 841
EP - 872
LA - eng
KW - elliptic-hyperbolic system; diphasic flow in a porous medium; finite volume scheme; error estimates; stability; convergence
UR - http://eudml.org/doc/193826
ER -
References
top- [1] S. BENHARBIT, A. CHALABI, J. P. VILA, Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions, to appear in SIAM Journal of Num. Anal. Zbl0865.35082MR1335655
- [2] S. CHAMPIER, T. GALLOUET, R. HERBIN, 1993, Convergence of an Upstream finite volume scheme on a Triangular Mesh for a Nonlinear Hyperbolic Equation, Numer. Math. 66, pp. 139-157. Zbl0801.65089MR1245008
- [3] R. DIPERNA, 1985, Measure-Valued Solutions to Conservation Laws, Arch. Rat. Mech. Anal., 88, pp. 223-270. Zbl0616.35055MR775191
- [4] R. EYMARD, T. GALLOUET, R. HERBIN, The finite volume method, in preparation for the Handbook of Numerical Analysis Ph. Ciarlet and J. L. Lions eds. Zbl0981.65095
- [5] R. EYMARD, T. GALLOUET, 1993, Convergence d'un schéma de type Eléments Finis-Volumes Finis pour un système formé d'une équation elliptique et d'une équation hyperbolique, M2AN, 27, 7, pp. 843-861. Zbl0792.65073MR1249455
- [6] J. M. FIARD and R. HERBIN, 1994, Comparison between finite volume and finite element methods for the numerical computation of an elliptic problem arising in electrochemical engineering, Comput. Math. Appl. Mech. Engin., 115, pp. 315-338.
- [7] T. GALLOUET, R. HERBIN, 1993, A uniqueness Result for Measure Valued Solutions of Non Linear Hyperbolic Equations, Differential Integral Equations, 6, 6, pp. 1383-1394. Zbl0806.35114MR1235201
- [8] R. HERBIN, 1994, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, Num. Meth. in P.D.E. Zbl0822.65085MR1316144
- [9] R. HERBIN, O. LABERGERIE, Finite volume and finite element schemes for elliptic-hyperbolic problems, submitted. Zbl0897.76072
- [10] A. SZEPESSY, 1989, Measure valued solution of scalar conservation laws with boundary conditions, Arch. Rat. Mech. Anal., 107, 2, pp. 182-193. Zbl0702.35155MR996910
- [11] P. S. VASSILEVSKI, S. I. PETROVA, R. D. LAZAROV, 1992, Finite Difference Schemes on Triangular Cell-Centered Grids With Local Refinement, SIAM J. Sci. Stat. Comput., 13, 6, pp. 1287-1313. Zbl0813.65115MR1185647
Citations in EuDML Documents
top- Robert Eymard, Raphaèle Herbin, Anthony Michel, Mathematical study of a petroleum-engineering scheme
- Laurent Levi, Obstacle problems for scalar conservation laws
- Laurent Levi, Obstacle problems for scalar conservation laws
- Robert Eymard, Raphaèle Herbin, Anthony Michel, Mathematical study of a petroleum-engineering scheme
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.