Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens

Jacques Baranger; Hassan El Amri

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 1, page 31-47
  • ISSN: 0764-583X

How to cite

top

Baranger, Jacques, and El Amri, Hassan. "Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.1 (1991): 31-47. <http://eudml.org/doc/193620>.

@article{Baranger1991,
author = {Baranger, Jacques, El Amri, Hassan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {a posteriori error estimators; mixed finite element approximation; quasi- Newtonian flows; self-adaptive mesh-refinement process},
language = {fre},
number = {1},
pages = {31-47},
publisher = {Dunod},
title = {Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens},
url = {http://eudml.org/doc/193620},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Baranger, Jacques
AU - El Amri, Hassan
TI - Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 1
SP - 31
EP - 47
LA - fre
KW - a posteriori error estimators; mixed finite element approximation; quasi- Newtonian flows; self-adaptive mesh-refinement process
UR - http://eudml.org/doc/193620
ER -

References

top
  1. E. ABDALASS [ 1987], Résolution Performante du Problème de Stokes par Mini-Élément, Maillage Auto-Adaptatifs et Méthodes Multigrilles Applications.Thèse de Doctorat, École Centrale de Lyon. 
  2. E. ABDALASS, J. F. MAITRE & F. MUSY [ 1987], A finite element solution of Stokes problem with an adaptive procedure, lst ICIAM Paris. Zbl0616.65104
  3. 0 I. BABUSKA & W. C. RHEINBOLTD [ 1978] a), Error Estimates for Adaptative Finite Element Computations. SIAM J. Numer. Anal. Vol. 15, n°4. Zbl0398.65069MR483395
  4. I. BABUSKA & W. C. RHEINBOLTD [ 1978] b), A Posteriori Error Estimates for the Finite Element Method. Int. J. Numer. Meth. Engng., 12, 1597-1615. Zbl0396.65068
  5. I. BABUSKA & W. C. RHEINBOLTD [ 1979], Analysis of Optimal Finite Element Meshes in R. Math. of Computation, 33, 435-463. Zbl0431.65055MR521270
  6. R. E. BANK [ 1986], Analysis of a Local a posteriori Error Estimate for Elliptic Equations. Dans « Accuracy Estimates and Adaptive Refinements in Finite Element Computations », Edit. Babuska, L, Zienkiewicz, O. C, Gago, J. et Oliveira, A. MR879445
  7. R. E. BANK & A. H. SHERMAN [ 1980], The use of Adaptive Grid Refinement for Badly Behaved Elliptic Partial Differential Equations. Math, and Computer XXII, pp. 18-24. Zbl0434.35008
  8. J. BARANGER & H. EL AMRI [ 1989], A posteriori error estimators for mixed finite element approximation of some quasi-newtonian flows. Invited lecture at the Workshop on innovative finite element methods. Rio de Janeiro Nov. 27 to Dec. lst. Zbl0770.76034
  9. J. BARANGER & K. NAJIB [ 1989], Analyse numérique d'une méthode d'éléments finis mixtes vitesse-pression pour le calcul d'écoulements quasi-newtoniens. 2e Congrès Franco-Chilien et Latino-Américain de mathématiques Appliquées, Santiago de Chile, décembre. Zbl0752.76006
  10. C. BERNARDI [ 1984], Optimal Finite Element Interpolation on Curved Domains. Publications du Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie, n° 17. Zbl0678.65003
  11. P. G. CIARLET [ 1978], The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Volume 4, North-Holland. Zbl0383.65058MR520174
  12. Ph. CLÉMENT [ 1975], Approximation by Finite Element Functions using Local Regularization. R.A.I.R.O. n°2, pp. 77-84. Zbl0368.65008MR400739
  13. P. GEORGET [ 1985], Contribution à l'étude des équations de Stokes à viscosité variable. Thèse de Doctorat. Université de Lyon I. 
  14. V. GIRAULT, P. A. RAVIART [ 1986], Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Amsterdam, North-Holland. Zbl0585.65077MR851383
  15. R. GLOWINSKI, A. MARROCCO [ 1975], Sur l'approximation par éléments finis d'ordre 1 et la résolution par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. R-2 R.A.I.R.O. Analyse Numérique, pp. 41-76. Zbl0368.65053MR388811
  16. K. NAJIB [ 1988], Analyse Numérique de Modèles d'Écoulements Quasi-Newtoniens. Thèse de Doctorat. Université de Lyon I. 
  17. J. T. ODEN, L. DEMKOWICZ, Ph. DELVOO & T. STROUBOULIS [ 1986], Adaptive Methods for Problems in Solid and Fluid Mechanics. Dans « Accuracy Estimates and Adaptive Refinements in Finite Element Computations », Edit. Babuska, L, Zienkiewicz, O. C, Gago, J. et Oliveira, A. MR879442
  18. M. C. RIVARA [ 1984], Adaptive Multigrid Software for the Finite Element Method. PhD thesis University Leuven, 1984. Zbl0578.65112
  19. I. G. ROSENBERG & F. STENGER [ 1975], A lower bound on the angles of triangles constructed by bisecting the logest side. Math. Comp. 29, pp. 390-395, 1975 Zbl0302.65085MR375068
  20. B. SCHEURER [ 1977], Existence et approximation de points selles pour certains problèmes non linéaires. R.A.I.R.O., Volume 11, n°4, Analyse Numérique, pp. 369-400. Zbl0371.65025MR464014
  21. R. VERFÜRTH [ 1989], A posteriori error estimators for the Stokes equations. Numerische Mathematik. Volume 55, n°3, 1989, pp. 309-325. Zbl0674.65092MR993474

Citations in EuDML Documents

top
  1. Roland Glowinski, Jacques Rappaz, Approximation of a nonlinear elliptic problem arising in a non-newtonian fluid flow model in glaciology
  2. Roland Glowinski, Jacques Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology
  3. D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau
  4. Marco Picasso, Jacques Rappaz, Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
  5. Marco Picasso, Jacques Rappaz, Existence, and error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
  6. Weizhu Bao, John W. Barrett, A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
  7. Andrea Bonito, Philippe Clément, Marco Picasso, Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.