Centenary of Baire’s category theorem

Ivan Netuka; Jiří Veselý

Pokroky matematiky, fyziky a astronomie (2000)

  • Volume: 45, Issue: 3, page 232-256
  • ISSN: 0032-2423

How to cite

top

Netuka, Ivan, and Veselý, Jiří. "Sto let Baireovy věty o kategoriích." Pokroky matematiky, fyziky a astronomie 45.3 (2000): 232-256. <http://eudml.org/doc/197005>.

@article{Netuka2000,
author = {Netuka, Ivan, Veselý, Jiří},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Baire category theorem},
language = {cze},
number = {3},
pages = {232-256},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Sto let Baireovy věty o kategoriích},
url = {http://eudml.org/doc/197005},
volume = {45},
year = {2000},
}

TY - JOUR
AU - Netuka, Ivan
AU - Veselý, Jiří
TI - Sto let Baireovy věty o kategoriích
JO - Pokroky matematiky, fyziky a astronomie
PY - 2000
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 45
IS - 3
SP - 232
EP - 256
LA - cze
KW - Baire category theorem
UR - http://eudml.org/doc/197005
ER -

References

top
  1. Baire, R., Sur les fonctions discontinues qui se rattachent aux fonctions continues, C. R. Acad. Sci. Paris 126 (1898), 1621–1623. (1898) 
  2. Baire, R., Sur les fonctions de variables réelles, Ann. Math. Pure Appl. 3 (1899), 1–123. (1899) Zbl30.0078.03
  3. Baire, R., Sur la théorie des fonctions discontinues, C. R. Acad. Sci. Paris 129 (1899), 1010–1013. (1899) Zbl30.0078.03
  4. Baire, R., Leçons sur les fonctions discontinues, Gauthier-Villars, Paris 1905. (1905) Zbl36.0438.01
  5. Baire, R., Projet de calandrier mensuel fixe, Revue Scientifique 59 (1921), 233–240. (1921) 
  6. Baire, R., Sur l’origine de la notion de semi-continuité, Bull. Soc. Math. France 55 (1927), 141–142. (1927) Zbl53.0226.05MR1504912
  7. Baire, R., Oeuvres scientifiques (P. Lelong, ed.), Gauthier-Villars, Paris 1990. (1990) Zbl0994.01015
  8. Banach, S., Steinhaus, H., Sur le principe de la condensation de singularités, Fund. Math. 9 (1927), 50–59. (1927) Zbl53.0243.02
  9. Boas, R. P., A primer of real functions, Mathematical Association of America, Washington, D. C. 1981. (1981) Zbl0473.26002MR0652482
  10. Bruckner, A. M., Differentiation of Real Functions, Amer. Math. Soc., Providence, RI 1994. (1994) Zbl0796.26004MR1274044
  11. Dauben, J. W., Georg Cantor. His Mathematics and Philosophy of the Infinite, Princeton University Press, Princeton NJ 1990. (1990) Zbl0858.01028MR1082146
  12. De Guzmán, M., Differentiation of integrals in n , Lecture Notes in Mathematics 481, Springer, Berlin 1975. (1975) MR0457661
  13. Dugac, P., Sur les fondaments de l’analyse de Cauchy à Baire, Thèse pour obtenir le grade de Docteur ès Science, l’Université Pierre et Marie Curie, Paris 1978. (1978) 
  14. Garg, K. M., On a residual set of continuous functions, Czech. Math. Journal 95 (1970), 537–543. (1970) Zbl0217.37204MR0268334
  15. Goffman, C., Pedrick, G., First course in functional analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J. 1965. (1965) Zbl0122.11206MR0184064
  16. Gruber, P. M., Results of Baire category type in convexity (Goodman, J. E., ed.), In: Discrete geometry and convexity, Ann. New York Acad. Sci., 440, New York Acad. Sci., New York 1985, s. 163–169. (1985) Zbl0571.52007MR0809203
  17. Gruber, P. M., Baire categories in convexity, In: Handbook of Convex Geometry, Vol. A, B (Gruber, P. M., Wills, J. M., eds.). North-Holland, Amsterdam 1993, s. 1327–1346. (1993) Zbl0791.52002MR1243011
  18. Choquet, G., Marsden, J., Lance, T., Gelbart, S. eds., Lectures on analysis, vol I.–III, W. A. Benjamin, New York 1969. (1969) 
  19. Jelínek, J., Král, J., Note on sequences of integrable functions, Czech. Math. Journal 13 (1963), 114–126. (1963) Zbl0112.28503MR0152619
  20. Katznelson, Y., Stromberg, K., Everywhere differentiable, nowhere monotone functions, Amer. Math. Monthly 81 (1974), 349–354. (1974) Zbl0279.26007MR0335701
  21. Kierst, S., Szpilrajn, E., Sur certaines singularités des fonctions analytiques uniformes, Fund. Math. 14 (1933), 276–294. (1933) Zbl0008.07401
  22. Klíma, V., Netuka, I., Smoothness of a typical convex function, Czech. Math. Journal 31 (1981), 569–572. (1981) Zbl0499.26004MR0631603
  23. Král, J., Netuka, I., Veselý, J., Teorie potenciálu II, SPN, Praha 1972. (1972) 
  24. Kuratowski, K., Some remarks on the origins of the theory of functions of a real variable and of the descriptive set theory, Rocky Mountain J. Math. 10 (1980), 25–33. (1980) Zbl0437.26002MR0573859
  25. Lebesgue, H., Recherches sur la convergence des séries de Fourier, Math. Ann. 61 (1905), 251–280. (1905) Zbl36.0330.01MR1511346
  26. Malý, J., Where the continuous functions without unilateral derivatives are typical, Trans. Amer. Math. Soc. 283 (1984), 169–175. (1984) Zbl0514.26002MR0735414
  27. Medvedev, F. A., Očerki istorii teorii funkcij dějstvitělnogo peremennogo, Nauka, Moskva 1975. (1975) 
  28. Medvedev, F. A., Francuzskaja škola teorii funkcij i množestv na ruběže 19.–20. vekov, Nauka, Moskva 1976. (1976) MR0532180
  29. Netuka, I., Veselý, J., Harmonic continuation and removable singularities in the axiomatic potential theory, Math. Ann. 234 (1978), 117–123. (1978) Zbl0358.31007MR0481063
  30. Orlicz, W., Z teorji równania różniczkowego y ' = f ( x , y ) — Zur Theorie der Differentialgleichung y ' = f ( x , y ) , Bull. Int. Acad. Polon. Sci. Sér. A (1932), 221–228. (1932) 
  31. Orlicz, W., Metoda kategorii Baire’a w zastosowaniu do pewnych zagadnień analizy matematycznej, Wiadom. Mat., Roczniki PTM, Ser. II (1982), 1–15. (1982) MR0705608
  32. Osgood, W., Non uniform convergence and the integration of series term by term, Amer. J. Math. 19 (1897), 155–190. (1897) Zbl28.0221.01MR1505734
  33. Oxtoby, J. C., Measure and category: a survey of the analogies between topological and measure spaces, Springer, New York 1980. (1980) Zbl0435.28011MR0584443
  34. Pier, J.-P. ed., Development of mathematics 1900–1950, Birkhäuser Verlag, Basel 1994. (1994) Zbl0796.00016MR1298630
  35. Preiss, D., The work of Professor Jarník in real analysis, In: Life and work of Vojtěch Jarník (1897–1970), Novák, B. ed., Prometheus, Praha 1999, s. 55–65. (1897) 
  36. Preiss, D., Zajíček, L., On Dini and aproximate Dini derivates of typical continuous functions, KMA Preprint Ser. 1999-13, Charles University, Praha (URL adresa: http://www.karlin.mff.cuni.cz/katedry/kma/kma.html). (1999) Zbl1009.26010MR1825518
  37. Renfro, D. L., Some supertypical nowhere differentiability results for C [ 0 , 1 ] , Ph. D. Thesis. N. Carolina State Univ., Raleigh, NC 1993. (1993) MR2690002
  38. Rudin, W., Analýza v reálném a komplexním oboru, Academia, Praha 1977. (1977) MR0497401
  39. Saks, S., On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19 (1932), 211–219. (1932) Zbl0005.39105
  40. Saks, S., Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math. 22 (1934), 257–261. (1934) Zbl0009.10602
  41. Volterra, V., Alcune osservazioni sulle funzioni punteggiate discontinue, Giornali di Math. 19 (1881), 76–86. (1881) 
  42. Weil, C. E., On nowhere monotone functions, Proc. Amer. Math. Soc. 56 (1976), 388–389. (1976) Zbl0327.26004MR0396870
  43. Zajíček, L., The differentiability structure of typical functions in C [ 0 , 1 ] , Real Anal. Exchange 13 (1987/88), 93, 113–116, 119. (1987) 
  44. Zajíček, L., Porosity and σ -porosity, Real Anal. Exchange 13 (1987/88), 314–350. (1987) MR0943561
  45. Zajíček, L., Porosity, derived numbers and knot points of typical continuous functions, Czech. Math. Journal 39 (1989), 45–52. (1989) Zbl0672.26002MR0983482
  46. Zajíček, L., Differentiability properties of typical continuous functions, Real Anal. Exchange 25 (1999/00), 149–158. (1999) Zbl1014.26514

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.