A construction of low-discrepancy sequences using global function fields
Chaoping Xing; Harald Niederreiter
Acta Arithmetica (1995)
- Volume: 73, Issue: 1, page 87-102
- ISSN: 0065-1036
Access Full Article
topHow to cite
topChaoping Xing, and Harald Niederreiter. "A construction of low-discrepancy sequences using global function fields." Acta Arithmetica 73.1 (1995): 87-102. <http://eudml.org/doc/206812>.
@article{ChaopingXing1995,
author = {Chaoping Xing, Harald Niederreiter},
journal = {Acta Arithmetica},
keywords = {construction of low-discrepancy sequences; digital -sequence; global function fields},
language = {eng},
number = {1},
pages = {87-102},
title = {A construction of low-discrepancy sequences using global function fields},
url = {http://eudml.org/doc/206812},
volume = {73},
year = {1995},
}
TY - JOUR
AU - Chaoping Xing
AU - Harald Niederreiter
TI - A construction of low-discrepancy sequences using global function fields
JO - Acta Arithmetica
PY - 1995
VL - 73
IS - 1
SP - 87
EP - 102
LA - eng
KW - construction of low-discrepancy sequences; digital -sequence; global function fields
UR - http://eudml.org/doc/206812
ER -
References
top- [1] H. Faure, Discrépance de suites associées à un système de numération (en dimension s ), Acta Arith. 41 (1982), 337-351. Zbl0442.10035
- [2] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math., to appear. Zbl0822.11078
- [3] G. Larcher and H. Niederreiter, Generalized (t,s)-sequences, Kronecker-type sequences, and diophantine approximations of formal Laurent series, Trans. Amer. Math. Soc. 347 (1995), 2051-2073. Zbl0829.11039
- [4] G. Larcher and W. C. Schmid, Multivariate Walsh series, digital nets and quasi-Monte Carlo integration, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue (eds.), Lecture Notes in Statist., Springer, Berlin, to appear. Zbl0831.65018
- [5] G. L. Mullen, A. Mahalanabis, and H. Niederreiter, Tables of (t,m,s)-net and (t,s)-sequence parameters, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue (eds.), Lecture Notes in Statist., Springer, Berli, to appear. Zbl0838.65004
- [6] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337. Zbl0626.10045
- [7] H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), 51-70. Zbl0651.10034
- [8] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, Penn., 1992.
- [9] H. Niederreiter, Pseudorandom numbers and quasirandom points, Z. Angew. Math. Mech. 73 (1993), T648-T652. Zbl0796.11028
- [10] H. Niederreiter, Factorization of polynomials and some linear-algebra problems over finite fields, Linear Algebra Appl. 192 (1993), 301-328. Zbl0845.11042
- [11] H. Niederreiter and C. P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith. 72 (1995), 281-298. Zbl0833.11035
- [12] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, preprint, 1995.
- [13] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. Zbl0538.14015
- [14] I. M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784-802 (in Russian).
- [15] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
- [16] S. Tezuka, Polynomial arithmetic analogue of Halton sequences, ACM Trans. Model. Comput. Simulation 3 (1993), 99-107. Zbl0846.11045
Citations in EuDML Documents
top- Harald Niederreiter, Chaoping Xing, Explicit global function fields over the binary field with many rational places
- Harald Niederreiter, Chaoping Xing, Global function fields with many rational places over the ternary field
- Harald Niederreiter, Chaoping Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places
- Harald Niederreiter, Chaoping Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.