Explicit global function fields over the binary field with many rational places
Harald Niederreiter; Chaoping Xing
Acta Arithmetica (1996)
- Volume: 75, Issue: 4, page 383-396
- ISSN: 0065-1036
Access Full Article
topHow to cite
topHarald Niederreiter, and Chaoping Xing. "Explicit global function fields over the binary field with many rational places." Acta Arithmetica 75.4 (1996): 383-396. <http://eudml.org/doc/206884>.
@article{HaraldNiederreiter1996,
author = {Harald Niederreiter, Chaoping Xing},
journal = {Acta Arithmetica},
keywords = {binary field with many rational places; global function field},
language = {eng},
number = {4},
pages = {383-396},
title = {Explicit global function fields over the binary field with many rational places},
url = {http://eudml.org/doc/206884},
volume = {75},
year = {1996},
}
TY - JOUR
AU - Harald Niederreiter
AU - Chaoping Xing
TI - Explicit global function fields over the binary field with many rational places
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 4
SP - 383
EP - 396
LA - eng
KW - binary field with many rational places; global function field
UR - http://eudml.org/doc/206884
ER -
References
top- [1] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-182. Zbl0018.19806
- [2] A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211-222. Zbl0822.11078
- [3] A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, preprint, 1995. Zbl0893.11047
- [4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. Zbl0292.12018
- [5] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724. Zbl0509.14019
- [6] H. Niederreiter and C. P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith. 72 (1995), 281-298. Zbl0833.11035
- [7] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl., to appear.
- [8] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press, Cambridge, to appear. Zbl0932.11050
- [9] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. Zbl0741.11044
- [10] R. Schoof, Algebraic curves over 𝔽₂ with many rational points, J. Number Theory 41 (1992), 6-14. Zbl0762.11026
- [11] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402. Zbl0538.14015
- [12] J.-P. Serre, Nombres de points des courbes algébriques sur , Sém. Théorie des Nombres 1982-1983, Exp. 22, Univ. de Bordeaux I, Talence, 1983.
- [13] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France (1984), 79-83.
- [14] J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985.
- [15] J.-P. Serre, personal communication, August 1995.
- [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
- [17] M. A. Tsfasman and S. G. Vlădut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. Zbl0727.94007
- [18] G. van der Geer and M. van der Vlugt, Curves over finite fields of characteristic 2 with many rational points, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 593-597. Zbl0787.14033
- [19] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963. Zbl0115.03601
- [20] C. P. Xing, Multiple Kummer extension and the number of prime divisors of degree one in function fields, J. Pure Applied Algebra 84 (1993), 85-93. Zbl0776.11068
- [21] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102. Zbl0848.11038
Citations in EuDML Documents
top- Harald Niederreiter, Chaoping Xing, Global function fields with many rational places over the ternary field
- Harald Niederreiter, Chaoping Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places
- Harald Niederreiter, Chaoping Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II
- Roland Auer, Ray class fields of global function fields with many rational places
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.