Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms
Colloquium Mathematicae (1997)
- Volume: 73, Issue: 2, page 229-249
- ISSN: 0010-1354
Access Full Article
topHow to cite
topDamek, Ewa. "Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms." Colloquium Mathematicae 73.2 (1997): 229-249. <http://eudml.org/doc/210488>.
@article{Damek1997,
author = {Damek, Ewa},
journal = {Colloquium Mathematicae},
keywords = {homogeneous manifold; second order subelliptic operator; Lie algebra; Harnack inequalities; Green function; Riesz transforms},
language = {eng},
number = {2},
pages = {229-249},
title = {Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms},
url = {http://eudml.org/doc/210488},
volume = {73},
year = {1997},
}
TY - JOUR
AU - Damek, Ewa
TI - Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 2
SP - 229
EP - 249
LA - eng
KW - homogeneous manifold; second order subelliptic operator; Lie algebra; Harnack inequalities; Green function; Riesz transforms
UR - http://eudml.org/doc/210488
ER -
References
top- [A1] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987), 495-536. Zbl0652.31008
- [A2] A. Ancona, Théorie du potentiel sur les graphes et les variétés, in: A. Ancona, D. Geman and N. Ikeda, École d'Été de Probabilités de Saint-Flour XVIII-1988, Lecture Notes in Math. 1427, Springer, Berlin, 1990, 1-112.
- [AS] M. T. Anderson and R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985), 429-461. Zbl0587.53045
- [An] J. P. Anker, A short proof of a classical covering lemma, Monatsh. Math. 107 (1989), 5-7. Zbl0671.22001
- [ADY] J. P. Anker, E. Damek and C. Yacoub, Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa, to appear. Zbl0881.22008
- [A] F. Astengo, Multipliers for a distinguished Laplacean on solvable extensions of H-type groups, Monatsh. Math. 120 (1995), 179-188. Zbl0865.43004
- [ACD] F. Astengo, R. Camporesi and B. Di Blasio, The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, preprint. Zbl0894.43003
- [Ba] D. Bakry, Etude des transformées de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, in: Séminaire de Probabilités XXI, Lecture Notes in Math. 1247, Springer, Berlin, 1987, 137-172.
- [BR] L. Birgé et A. Raugi, Fonctions harmoniques sur les groupes moyennables, C. R. Acad. Sci. Paris 278 (1974), 1287-1289. Zbl0279.43006
- [B] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Gre- noble) 19 (1) (1969), 277-304. Zbl0176.09703
- [B1] M. Brelot, Éléments de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris, 1961.
- [B2] M. Brelot, Axiomatique des fonctions harmoniques, Les Presses de l'Université de Montréal, Montréal, 1966.
- M. Cowling, A. H. Dooley, A. H. Korányi and F. Ricci, H-type groups and Iwasawa decompositions, Adv. in Math. 87 (1991), 1-41. Zbl0761.22010
- [C] P. Crepel, Récurrence des marches aléatoires sur les groupes de Lie, in: Théorie Ergodique Rennes 1973/4, Lecture Notes in Math. 532, Springer, 1976, 50-69.
- [D] E. Damek, Pointwise estimates for the Poisson kernel on NA groups by the Ancona method, Ann. Fac. Sci. Toulouse Math., to appear. Zbl0876.22008
- [DH] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. Zbl0699.22012
- [DHZ] E. Damek, A. Hulanicki and J. Zienkiewicz, Estimates for the Poisson kernels and their derivatives on rank one NA groups, preprint. Zbl0888.22007
- [DR1] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-248. Zbl0788.43008
- [DR2] E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. 27 (1992), 139-142. Zbl0755.53032
- [Di] B. Di Blasio, Paley-Wiener type theorems on harmonic extensions of H-type groups, preprint. Zbl0887.43001
- [GQS] G. I. Gaudry, T. Qian and P. Sjögren, Singular integrals associated to the Laplacian on the affine group ax+b, Ark. Mat. 30 (1992), 259-281. Zbl0776.43003
- [G] Y. Guivarc'h, Sur la loi des grands nombres et la rayon spectral d'une marche aléatoire, in: Journées sur les marches aléatoires, Astérisque 74 (1980), 47-98.
- [Heb] W. Hebisch, Estimates on the semigroups generated by left-invariant operators on Lie groups, J. Reine Angew. Math. 423 (1992), 1-45.
- [He] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34. Zbl0273.53042
- [H] R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmo- niques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. Zbl0101.08103
- [HH] R.-M. Hervé et M. Hervé, Les fonctions surharmoniques dans l'axiomatique de M. Brelot associeés à un opérateur elliptique dégénéré, ibid. 22 (2) (1972), 131-145. Zbl0224.31014
- [L1] N. Lohoué, Comparaison des champs de vecteurs et des puissances du Laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal. 61 (1985), 164-201. Zbl0605.58051
- [L2] N. Lohoué, Transformées de Riesz et fonctions sommables, Amer. J. Math. 114 (1992), 875-922.
- [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. Zbl0516.47023
- [Ra] A. Raugi, Fonctions harmoniques sur les groupes localement compacts à base dénombrable, Bull. Soc. Math. France Mém. 54 (1977), 5-118. Zbl0389.60003
- [R] F. Ricci, The spherical transform on harmonic extensions of H-type groups, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 381-392. Zbl0829.43021
- [S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. Zbl0821.42001
- [Str] J.-O. Strömberg, Weak type estimates for maximal functions on non-com- pact symmetric spaces, Ann. of Math. 114 (1981), 115-126.
- [VSC] N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, 1992.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.