Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms

Ewa Damek

Colloquium Mathematicae (1997)

  • Volume: 73, Issue: 2, page 229-249
  • ISSN: 0010-1354

How to cite

top

Damek, Ewa. "Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms." Colloquium Mathematicae 73.2 (1997): 229-249. <http://eudml.org/doc/210488>.

@article{Damek1997,
author = {Damek, Ewa},
journal = {Colloquium Mathematicae},
keywords = {homogeneous manifold; second order subelliptic operator; Lie algebra; Harnack inequalities; Green function; Riesz transforms},
language = {eng},
number = {2},
pages = {229-249},
title = {Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms},
url = {http://eudml.org/doc/210488},
volume = {73},
year = {1997},
}

TY - JOUR
AU - Damek, Ewa
TI - Fundamental solutions of differential operators on homogeneous manifolds of negative curvature and related Riesz transforms
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 2
SP - 229
EP - 249
LA - eng
KW - homogeneous manifold; second order subelliptic operator; Lie algebra; Harnack inequalities; Green function; Riesz transforms
UR - http://eudml.org/doc/210488
ER -

References

top
  1. [A1] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987), 495-536. Zbl0652.31008
  2. [A2] A. Ancona, Théorie du potentiel sur les graphes et les variétés, in: A. Ancona, D. Geman and N. Ikeda, École d'Été de Probabilités de Saint-Flour XVIII-1988, Lecture Notes in Math. 1427, Springer, Berlin, 1990, 1-112. 
  3. [AS] M. T. Anderson and R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985), 429-461. Zbl0587.53045
  4. [An] J. P. Anker, A short proof of a classical covering lemma, Monatsh. Math. 107 (1989), 5-7. Zbl0671.22001
  5. [ADY] J. P. Anker, E. Damek and C. Yacoub, Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa, to appear. Zbl0881.22008
  6. [A] F. Astengo, Multipliers for a distinguished Laplacean on solvable extensions of H-type groups, Monatsh. Math. 120 (1995), 179-188. Zbl0865.43004
  7. [ACD] F. Astengo, R. Camporesi and B. Di Blasio, The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, preprint. Zbl0894.43003
  8. [Ba] D. Bakry, Etude des transformées de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, in: Séminaire de Probabilités XXI, Lecture Notes in Math. 1247, Springer, Berlin, 1987, 137-172. 
  9. [BR] L. Birgé et A. Raugi, Fonctions harmoniques sur les groupes moyennables, C. R. Acad. Sci. Paris 278 (1974), 1287-1289. Zbl0279.43006
  10. [B] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Gre- noble) 19 (1) (1969), 277-304. Zbl0176.09703
  11. [B1] M. Brelot, Éléments de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris, 1961. 
  12. [B2] M. Brelot, Axiomatique des fonctions harmoniques, Les Presses de l'Université de Montréal, Montréal, 1966. 
  13. M. Cowling, A. H. Dooley, A. H. Korányi and F. Ricci, H-type groups and Iwasawa decompositions, Adv. in Math. 87 (1991), 1-41. Zbl0761.22010
  14. [C] P. Crepel, Récurrence des marches aléatoires sur les groupes de Lie, in: Théorie Ergodique Rennes 1973/4, Lecture Notes in Math. 532, Springer, 1976, 50-69. 
  15. [D] E. Damek, Pointwise estimates for the Poisson kernel on NA groups by the Ancona method, Ann. Fac. Sci. Toulouse Math., to appear. Zbl0876.22008
  16. [DH] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. Zbl0699.22012
  17. [DHZ] E. Damek, A. Hulanicki and J. Zienkiewicz, Estimates for the Poisson kernels and their derivatives on rank one NA groups, preprint. Zbl0888.22007
  18. [DR1] E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213-248. Zbl0788.43008
  19. [DR2] E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. 27 (1992), 139-142. Zbl0755.53032
  20. [Di] B. Di Blasio, Paley-Wiener type theorems on harmonic extensions of H-type groups, preprint. Zbl0887.43001
  21. [GQS] G. I. Gaudry, T. Qian and P. Sjögren, Singular integrals associated to the Laplacian on the affine group ax+b, Ark. Mat. 30 (1992), 259-281. Zbl0776.43003
  22. [G] Y. Guivarc'h, Sur la loi des grands nombres et la rayon spectral d'une marche aléatoire, in: Journées sur les marches aléatoires, Astérisque 74 (1980), 47-98. 
  23. [Heb] W. Hebisch, Estimates on the semigroups generated by left-invariant operators on Lie groups, J. Reine Angew. Math. 423 (1992), 1-45. 
  24. [He] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34. Zbl0273.53042
  25. [H] R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmo- niques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. Zbl0101.08103
  26. [HH] R.-M. Hervé et M. Hervé, Les fonctions surharmoniques dans l'axiomatique de M. Brelot associeés à un opérateur elliptique dégénéré, ibid. 22 (2) (1972), 131-145. Zbl0224.31014
  27. [L1] N. Lohoué, Comparaison des champs de vecteurs et des puissances du Laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal. 61 (1985), 164-201. Zbl0605.58051
  28. [L2] N. Lohoué, Transformées de Riesz et fonctions sommables, Amer. J. Math. 114 (1992), 875-922. 
  29. [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. Zbl0516.47023
  30. [Ra] A. Raugi, Fonctions harmoniques sur les groupes localement compacts à base dénombrable, Bull. Soc. Math. France Mém. 54 (1977), 5-118. Zbl0389.60003
  31. [R] F. Ricci, The spherical transform on harmonic extensions of H-type groups, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 381-392. Zbl0829.43021
  32. [S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. Zbl0821.42001
  33. [Str] J.-O. Strömberg, Weak type L 1 estimates for maximal functions on non-com- pact symmetric spaces, Ann. of Math. 114 (1981), 115-126. 
  34. [VSC] N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.