A posteriori error analysis of the fully discretized time-dependent Stokes equations
Christine Bernardi; Rüdiger Verfürth
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 3, page 437-455
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBernardi, Christine, and Verfürth, Rüdiger. "A posteriori error analysis of the fully discretized time-dependent Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis 38.3 (2010): 437-455. <http://eudml.org/doc/194222>.
@article{Bernardi2010,
abstract = {
The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.
},
author = {Bernardi, Christine, Verfürth, Rüdiger},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Time-dependent Stokes equations; a posteriori error estimates; backward Euler scheme; finite elements.; finite elements},
language = {eng},
month = {3},
number = {3},
pages = {437-455},
publisher = {EDP Sciences},
title = {A posteriori error analysis of the fully discretized time-dependent Stokes equations},
url = {http://eudml.org/doc/194222},
volume = {38},
year = {2010},
}
TY - JOUR
AU - Bernardi, Christine
AU - Verfürth, Rüdiger
TI - A posteriori error analysis of the fully discretized time-dependent Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 38
IS - 3
SP - 437
EP - 455
AB -
The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.
LA - eng
KW - Time-dependent Stokes equations; a posteriori error estimates; backward Euler scheme; finite elements.; finite elements
UR - http://eudml.org/doc/194222
ER -
References
top- A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. (to appear).
- C. Bernardi and B. Métivet, Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis9 (2000) 425–438.
- C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation. P.-L. George Ed., Hermès (2001) 251–278.
- M. Bieterman and I. Babuška, The finite element method for parabolic equations. I. A posteriori error estimation. Numer. Math.40 (1982) 339–371.
- M. Bieterman and I. Babuška, The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach. Numer. Math.40 (1982) 373–406.
- P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér.9 (1975) 77–84.
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal.28 (1991) 43–77.
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal.32 (1995) 1729–1749.
- V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations. Springer-Verlag, Lect. Notes Math.749 (1979).
- J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal.27 (1990) 353–384.
- C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal.27 (1990) 277–291.
- M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg.167 (1998) 223–237.
- J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems. Numer. Math.69 (1994) 213–231.
- R. Temam, Theory and Numerical Analysis of the Navier–Stokes Equations. North-Holland (1977).
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996).
- R. Verfürth, A posteriori error estimates for nonlinear problems: –error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Differential Equations14 (1998) 487–518.
- R. Verfürth, A posteriori error estimates for nonlinear problems. –error estimates for finite element discretizations of parabolic equations. Math. Comp.67 (1998) 1335–1360.
- R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN33 (1999) 695–713.
- R. Verfürth, A posteriori error estimation techniques for non-linear elliptic and parabolic pdes, Rev. Européenne Élém. Finis9 (2000) 377–402.
Citations in EuDML Documents
top- Rafaela Guberovic, Christoph Schwab, Rob Stevenson, Space-time variational saddle point formulations of Stokes and Navier–Stokes equations
- J. R. Fernández, D. Santamarina, An a posteriori error analysis for dynamic viscoelastic problems
- J. R. Fernández, D. Santamarina, An error analysis for dynamic viscoelastic problems
- Serge Nicaise, Nadir Soualem, A posteriori error estimates for a nonconforming finite element discretization of the heat equation
- Serge Nicaise, Nadir Soualem, error estimates for a nonconforming finite element discretization of the heat equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.