A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions
Jamol I. Baltaev; Milan Kučera; Martin Väth
Applications of Mathematics (2012)
- Volume: 57, Issue: 2, page 143-165
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBaltaev, Jamol I., Kučera, Milan, and Väth, Martin. "A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions." Applications of Mathematics 57.2 (2012): 143-165. <http://eudml.org/doc/246145>.
@article{Baltaev2012,
abstract = {We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential operator, and a variational approach is used in a certain non-direct way.},
author = {Baltaev, Jamol I., Kučera, Milan, Väth, Martin},
journal = {Applications of Mathematics},
keywords = {reaction-diffusion system; unilateral condition; variational inequality; local bifurcation; variational approach; spatial patterns; reaction-diffusion system; unilateral condition; variational inequality; local bifurcation; variational approach; spatial patterns},
language = {eng},
number = {2},
pages = {143-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions},
url = {http://eudml.org/doc/246145},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Baltaev, Jamol I.
AU - Kučera, Milan
AU - Väth, Martin
TI - A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 143
EP - 165
AB - We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential operator, and a variational approach is used in a certain non-direct way.
LA - eng
KW - reaction-diffusion system; unilateral condition; variational inequality; local bifurcation; variational approach; spatial patterns; reaction-diffusion system; unilateral condition; variational inequality; local bifurcation; variational approach; spatial patterns
UR - http://eudml.org/doc/246145
ER -
References
top- Baltaev, J. I., Kučera, M., 10.1016/j.jmaa.2008.04.056, J. Math. Anal. Appl. 345 (2008), 917-928. (2008) Zbl1145.49004MR2429191DOI10.1016/j.jmaa.2008.04.056
- Drábek, P., Kučera, M., Míková, M., Bifurcation points of reaction-diffusion systems with unilateral conditions, Czech. Math. J. 35 (1985), 639-660. (1985) Zbl0604.35042MR0809047
- Drábek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter Berlin (1997). (1997) Zbl0894.35002MR1460729
- Edelstein-Keshet, L., Mathematical Models in Biology, McGraw-Hill Boston (1988). (1988) Zbl0674.92001MR1010228
- Eisner, J., 10.1016/S0362-546X(99)00446-0, Nonlinear Anal., Theory Methods Appl. 46 (2001), 69-90. (2001) Zbl0980.35029MR1845578DOI10.1016/S0362-546X(99)00446-0
- Eisner, J., Kučera, M., Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions, Fields Institute Communications 25 (2000), 239-256. (2000) Zbl0969.35019MR1759546
- Eisner, J., Kučera, M., Recke, L., 10.1016/S0022-247X(02)00273-1, J. Math. Anal. Appl. 274 (2002), 159-180. (2002) Zbl1040.49006MR1936692DOI10.1016/S0022-247X(02)00273-1
- Eisner, J., Kučera, M., Recke, L., 10.1016/j.jmaa.2004.07.021, J. Math. Anal. Appl. 301 (2005), 276-294. (2005) MR2105671DOI10.1016/j.jmaa.2004.07.021
- Eisner, J., Kučera, M., Väth, M., 10.4171/ZAA/1390, J. Anal. Anwend. 28 (2009), 373-409. (2009) Zbl1182.35025MR2550696DOI10.4171/ZAA/1390
- Fučík, S., Kufner, A., Nonlinear Differential Equations, Elsevier Amsterdam-Oxford-New York (1980). (1980) MR0558764
- Jones, D. S., Sleeman, B. D., Differential Equations and Mathematical Biology, Chapman & Hall/CRC Boca Raton (2003). (2003) Zbl1020.92001MR1967145
- Kučera, M., 10.1023/A:1022411501260, Czech. Math. J. 47 (1997), 469-486. (1997) Zbl0898.35010MR1461426DOI10.1023/A:1022411501260
- Kučera, M., Recke, L., Eisner, J., Smooth bifurcation for variational inequalities and reaction-diffusion systems, Progresses in Analysis J. G. W. Begehr, R. P. Gilbert, M. W. Wong World Scientific Singapore-New Jersey-London-Hong Kong (2001), 1125-1133. (2001) MR2032793
- Miersemann, E., 10.1002/mana.19750650118, Math. Nachr. 65 (1975), 187-209 German. (1975) Zbl0324.49035MR0387843DOI10.1002/mana.19750650118
- Mimura, M., Nishiura, Y., Yamaguti, M., 10.1111/j.1749-6632.1979.tb29492.x, Ann. New York Acad. Sci. 316 (1979), 490-510. (1979) Zbl0437.92027MR0556853DOI10.1111/j.1749-6632.1979.tb29492.x
- Murray, J. D., Mathematical Biology, 2nd ed, Springer Berlin (1993). (1993) Zbl0779.92001MR1007836
- Nishiura, Y., Global structure of bifurcating solutions of some reaction-diffusion systems and their stability problem, Proceedings of the 5th Int. Symp. Computing Methods in Applied Sciences and Engineering, Versailles, France, 1981 R. Glowinski, J. L. Lions North-Holland Amsterdam-New York-Oxford (1982). (1982) Zbl0505.76103MR0784643
- Quittner, P., Bifurcation points and eigenvalues of inequalities of reaction-diffusion type, J. Reine Angew. Math. 380 (1987), 1-13. (1987) Zbl0617.35053MR0916198
- Recke, L., Eisner, J., Kučera, M ., 10.1016/S0022-247X(02)00272-X, J. Math. Anal. Appl. 275 (2002), 615-641. (2002) Zbl1018.34042MR1943769DOI10.1016/S0022-247X(02)00272-X
- Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer New York-Heidelberg-Berlin (1983). (1983) Zbl0508.35002MR0688146
- Zeidler, E., Nonlinear Functional Analysis and Its Applications, vol. II/A, Springer New York-Berlin-Heidelberg (1990). (1990)
- Zeidler, E., Nonlinear Functional Analysis and Its Applications, vol. III, Springer New York-Berlin-Heidelberg (1985). (1985) MR0768749
- Zeidler, E., Nonlinear Functional Analysis and Its Applications, vol. IV, Springer New York-Berlin-Heidelberg (1988). (1988) MR0932255
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.