Valuations and asymptotic invariants for sequences of ideals
Mattias Jonsson[1]; Mircea Mustaţă[1]
- [1] Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2145-2209
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJonsson, Mattias, and Mustaţă, Mircea. "Valuations and asymptotic invariants for sequences of ideals." Annales de l’institut Fourier 62.6 (2012): 2145-2209. <http://eudml.org/doc/251034>.
@article{Jonsson2012,
abstract = {We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space.},
affiliation = {Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA},
author = {Jonsson, Mattias, Mustaţă, Mircea},
journal = {Annales de l’institut Fourier},
keywords = {Graded sequence of ideals; multiplier ideals; log canonical threshold; valuation; graded sequence of ideals},
language = {eng},
number = {6},
pages = {2145-2209},
publisher = {Association des Annales de l’institut Fourier},
title = {Valuations and asymptotic invariants for sequences of ideals},
url = {http://eudml.org/doc/251034},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Jonsson, Mattias
AU - Mustaţă, Mircea
TI - Valuations and asymptotic invariants for sequences of ideals
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2145
EP - 2209
AB - We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space.
LA - eng
KW - Graded sequence of ideals; multiplier ideals; log canonical threshold; valuation; graded sequence of ideals
UR - http://eudml.org/doc/251034
ER -
References
top- M. André, Localisation de la lissité formelle, Manuscripta Math. 13 (1974), 297-307 Zbl0287.18019MR357403
- M. Baker, R. Rumely, Potential theory and dynamics on the Berkovich projective line, 159 (2010), American Mathematical Society, Providence, RI Zbl1196.14002MR2599526
- V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 33 (1990), Amer. Math. Soc., Providence, RI Zbl0715.14013MR1070709
- V. G. Berkovich, A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, Arithmetic and Geometry 269 (2010), 49-67, Birkhäuser Boston Zbl1195.14014MR2641170
- S. Boucksom, C. Favre, M. Jonsson, Izumi’s theorem and non-Archimedean plurisubharmonic functions Zbl1312.13006
- S. Boucksom, C. Favre, M. Jonsson, Pluripotential theory on valuation space
- S. Boucksom, C. Favre, M. Jonsson, Singular semipositive metrics in non-Archimedean geometry Zbl06543159
- S. Boucksom, C. Favre, M. Jonsson, Solution to a non-Archimedean Monge-Ampère equation Zbl1325.32021
- S. Boucksom, C. Favre, M. Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), 449-494 Zbl1146.32017MR2426355
- S. Boucksom, T. de Fernex, C. Favre, The volume of an isolated singularity Zbl1251.14026
- A. Brøndsted, An introduction to convex polytopes, 90 (1983), Springer-Verlag, New York-Berlin Zbl0509.52001MR683612
- B. Conrad, Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), 205-257 Zbl1142.14001MR2356346
- J.-P. Demailly, L. Ein, R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
- J.-P. Demailly, J. Kollár, Semicontinuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Supér. (4) 34 (2001), 525-556 Zbl0994.32021MR1852009
- L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, M. Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701-1734 Zbl1127.14010MR2282673
- L. Ein, R. Lazarsfeld, K. E. Smith, Uniform approximation of Abhyankar valuations in smooth function fields, Amer. J. Math. 125 (2003), 409-440 Zbl1033.14030MR1963690
- L. Ein, R. Lazarsfeld, K. E. Smith, D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), 469-506 Zbl1061.14003MR2068967
- L. Ein, M. Mustaţă, Invariants of singularities of pairs, International Congress of Mathematicians II (2006), 583-602, Eur. Math. Soc., Zürich Zbl1096.14030MR2275611
- C. Favre, M. Jonsson, The valuative tree, 1853 (2004), Springer Zbl1064.14024MR2097722
- C. Favre, M. Jonsson, Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (2005), 655-684 Zbl1075.14001MR2138140
- C. Favre, M. Jonsson, Valuative analysis of planar plurisubharmonic functions, Invent. Math. 162 (2005), 271-311 Zbl1089.32032MR2199007
- T. de Fernex, L. Ein, M. Mustaţă, Log canonical thresholds on varieties with bounded singularities, Classification of algebraic varieties (2011), 221-257, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich Zbl1215.14007MR2779474
- T. de Fernex, M. Mustaţă, Limits of log canonical thresholds, Ann. Sci. École Norm. Supér. (4) 42 (2009), 491-515 Zbl1186.14007MR2543330
- W. Fulton, Introduction to toric varieties, 131 (1993), The William H. Rover Lectures in Geometry, Princeton Univ. Press, Princeton, NJ Zbl0813.14039MR1234037
- H. Guenancia, Toric plurisubharmonic functions and analytic adjoint ideal sheaves Zbl1255.32014
- J. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), 2665-2671 Zbl0979.13026MR1828466
- S. Izumi, A measure of integrity for local analytic algebras, Publ. RIMS Kyoto Univ. 21 (1985), 719-735 Zbl0587.32016MR817161
- M. Jonsson, Dynamics on Berkovich spaces in low dimensions Zbl06463429
- K. Kedlaya, Good formal structures for flat meromorphic connections, I: Surfaces, Duke Math. J. 154 (2010), 343-418 Zbl1204.14010MR2682186
- K. Kedlaya, Good formal structures for flat meromorphic connections, II: Excellent schemes, J. Amer. Math. Soc. 24 (2011), 183-229 Zbl1282.14037MR2726603
- G. Kempf, F. F. Knudsen, Mumford D., B. Saint-Donat, Toroidal embeddings. I, 339 (1973), Springer-Verlag, Berlin Zbl0271.14017MR335518
- J. Kollár, Singularities of pairs, Algebraic geometry, Santa Cruz 1995 (1997), 221-286, Amer. Math. Soc., Providence, RI Zbl0905.14002MR1492525
- M. Kontsevich, Y. Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics 244 (2006), 321-385, Birkhäuser, Boston Zbl1114.14027MR2181810
- R. Lazarsfeld, Positivity in algebraic geometry II, 49 (2004), Springer-Verlag, Berlin Zbl0633.14016MR2095472
- H. Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, (1989), Cambridge University Press, Cambridge Zbl0666.13002MR1011461
- J. D. McNeal, Y. E. Zeytuncu, Multiplier ideals and integral closure of monomial ideals: An analytic approach Zbl1246.13041
- M. Mustaţă, On multiplicities of graded sequences of ideals, J. Algebra 256 (2002), 229-249 Zbl1076.13500MR1936888
- S. Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), 543-556 Zbl1193.14077MR2511632
- M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), 107-156 Zbl0716.13003MR1037606
- M. Temkin, Functorial desingularization over : boundaries and the embedded case
- M. Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219 (2008), 488-522 Zbl1146.14009MR2435647
- A. Thuillier, Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, (2005)
- A. Thuillier, Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math. 123 (2007), 381-541 Zbl1134.14018MR2320738
- J.-C. Tougeron, Idéaux de fonctions differentiables, (1972), Springer-Verlag, Berlin Zbl0251.58001MR440598
- M. Vaquié, Valuations, Resolution of singularities (Obergurgl, 1997) 181 (2000), 539-590, Birkhäuser, Basel Zbl1003.13001MR1748635
- A. Wolfe, Cones and asymptotic invariants of multigraded systems of ideals, J. Algebra 319 (2008), 1851-1869 Zbl1142.14004MR2392582
- O. Zariski, Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852-896 Zbl0025.21601MR2864
- O. Zariski, P. Samuel, Commutative algebra, II (1960), Princeton, NJ, Van Nostrand Zbl0121.27801MR120249
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.