Valuations and asymptotic invariants for sequences of ideals

Mattias Jonsson[1]; Mircea Mustaţă[1]

  • [1] Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 6, page 2145-2209
  • ISSN: 0373-0956

Abstract

top
We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space.

How to cite

top

Jonsson, Mattias, and Mustaţă, Mircea. "Valuations and asymptotic invariants for sequences of ideals." Annales de l’institut Fourier 62.6 (2012): 2145-2209. <http://eudml.org/doc/251034>.

@article{Jonsson2012,
abstract = {We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space.},
affiliation = {Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA},
author = {Jonsson, Mattias, Mustaţă, Mircea},
journal = {Annales de l’institut Fourier},
keywords = {Graded sequence of ideals; multiplier ideals; log canonical threshold; valuation; graded sequence of ideals},
language = {eng},
number = {6},
pages = {2145-2209},
publisher = {Association des Annales de l’institut Fourier},
title = {Valuations and asymptotic invariants for sequences of ideals},
url = {http://eudml.org/doc/251034},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Jonsson, Mattias
AU - Mustaţă, Mircea
TI - Valuations and asymptotic invariants for sequences of ideals
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2145
EP - 2209
AB - We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space.
LA - eng
KW - Graded sequence of ideals; multiplier ideals; log canonical threshold; valuation; graded sequence of ideals
UR - http://eudml.org/doc/251034
ER -

References

top
  1. M. André, Localisation de la lissité formelle, Manuscripta Math. 13 (1974), 297-307 Zbl0287.18019MR357403
  2. M. Baker, R. Rumely, Potential theory and dynamics on the Berkovich projective line, 159 (2010), American Mathematical Society, Providence, RI Zbl1196.14002MR2599526
  3. V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 33 (1990), Amer. Math. Soc., Providence, RI Zbl0715.14013MR1070709
  4. V. G. Berkovich, A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, Arithmetic and Geometry 269 (2010), 49-67, Birkhäuser Boston Zbl1195.14014MR2641170
  5. S. Boucksom, C. Favre, M. Jonsson, Izumi’s theorem and non-Archimedean plurisubharmonic functions Zbl1312.13006
  6. S. Boucksom, C. Favre, M. Jonsson, Pluripotential theory on valuation space 
  7. S. Boucksom, C. Favre, M. Jonsson, Singular semipositive metrics in non-Archimedean geometry Zbl06543159
  8. S. Boucksom, C. Favre, M. Jonsson, Solution to a non-Archimedean Monge-Ampère equation Zbl1325.32021
  9. S. Boucksom, C. Favre, M. Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), 449-494 Zbl1146.32017MR2426355
  10. S. Boucksom, T. de Fernex, C. Favre, The volume of an isolated singularity Zbl1251.14026
  11. A. Brøndsted, An introduction to convex polytopes, 90 (1983), Springer-Verlag, New York-Berlin Zbl0509.52001MR683612
  12. B. Conrad, Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), 205-257 Zbl1142.14001MR2356346
  13. J.-P. Demailly, L. Ein, R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
  14. J.-P. Demailly, J. Kollár, Semicontinuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Supér. (4) 34 (2001), 525-556 Zbl0994.32021MR1852009
  15. L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, M. Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701-1734 Zbl1127.14010MR2282673
  16. L. Ein, R. Lazarsfeld, K. E. Smith, Uniform approximation of Abhyankar valuations in smooth function fields, Amer. J. Math. 125 (2003), 409-440 Zbl1033.14030MR1963690
  17. L. Ein, R. Lazarsfeld, K. E. Smith, D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), 469-506 Zbl1061.14003MR2068967
  18. L. Ein, M. Mustaţă, Invariants of singularities of pairs, International Congress of Mathematicians II (2006), 583-602, Eur. Math. Soc., Zürich Zbl1096.14030MR2275611
  19. C. Favre, M. Jonsson, The valuative tree, 1853 (2004), Springer Zbl1064.14024MR2097722
  20. C. Favre, M. Jonsson, Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (2005), 655-684 Zbl1075.14001MR2138140
  21. C. Favre, M. Jonsson, Valuative analysis of planar plurisubharmonic functions, Invent. Math. 162 (2005), 271-311 Zbl1089.32032MR2199007
  22. T. de Fernex, L. Ein, M. Mustaţă, Log canonical thresholds on varieties with bounded singularities, Classification of algebraic varieties (2011), 221-257, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich Zbl1215.14007MR2779474
  23. T. de Fernex, M. Mustaţă, Limits of log canonical thresholds, Ann. Sci. École Norm. Supér. (4) 42 (2009), 491-515 Zbl1186.14007MR2543330
  24. W. Fulton, Introduction to toric varieties, 131 (1993), The William H. Rover Lectures in Geometry, Princeton Univ. Press, Princeton, NJ Zbl0813.14039MR1234037
  25. H. Guenancia, Toric plurisubharmonic functions and analytic adjoint ideal sheaves Zbl1255.32014
  26. J. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), 2665-2671 Zbl0979.13026MR1828466
  27. S. Izumi, A measure of integrity for local analytic algebras, Publ. RIMS Kyoto Univ. 21 (1985), 719-735 Zbl0587.32016MR817161
  28. M. Jonsson, Dynamics on Berkovich spaces in low dimensions Zbl06463429
  29. K. Kedlaya, Good formal structures for flat meromorphic connections, I: Surfaces, Duke Math. J. 154 (2010), 343-418 Zbl1204.14010MR2682186
  30. K. Kedlaya, Good formal structures for flat meromorphic connections, II: Excellent schemes, J. Amer. Math. Soc. 24 (2011), 183-229 Zbl1282.14037MR2726603
  31. G. Kempf, F. F. Knudsen, Mumford D., B. Saint-Donat, Toroidal embeddings. I, 339 (1973), Springer-Verlag, Berlin Zbl0271.14017MR335518
  32. J. Kollár, Singularities of pairs, Algebraic geometry, Santa Cruz 1995 (1997), 221-286, Amer. Math. Soc., Providence, RI Zbl0905.14002MR1492525
  33. M. Kontsevich, Y. Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics 244 (2006), 321-385, Birkhäuser, Boston Zbl1114.14027MR2181810
  34. R. Lazarsfeld, Positivity in algebraic geometry II, 49 (2004), Springer-Verlag, Berlin Zbl0633.14016MR2095472
  35. H. Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, (1989), Cambridge University Press, Cambridge Zbl0666.13002MR1011461
  36. J. D. McNeal, Y. E. Zeytuncu, Multiplier ideals and integral closure of monomial ideals: An analytic approach Zbl1246.13041
  37. M. Mustaţă, On multiplicities of graded sequences of ideals, J. Algebra 256 (2002), 229-249 Zbl1076.13500MR1936888
  38. S. Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), 543-556 Zbl1193.14077MR2511632
  39. M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), 107-156 Zbl0716.13003MR1037606
  40. M. Temkin, Functorial desingularization over Q : boundaries and the embedded case 
  41. M. Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219 (2008), 488-522 Zbl1146.14009MR2435647
  42. A. Thuillier, Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, (2005) 
  43. A. Thuillier, Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math. 123 (2007), 381-541 Zbl1134.14018MR2320738
  44. J.-C. Tougeron, Idéaux de fonctions differentiables, (1972), Springer-Verlag, Berlin Zbl0251.58001MR440598
  45. M. Vaquié, Valuations, Resolution of singularities (Obergurgl, 1997) 181 (2000), 539-590, Birkhäuser, Basel Zbl1003.13001MR1748635
  46. A. Wolfe, Cones and asymptotic invariants of multigraded systems of ideals, J. Algebra 319 (2008), 1851-1869 Zbl1142.14004MR2392582
  47. O. Zariski, Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852-896 Zbl0025.21601MR2864
  48. O. Zariski, P. Samuel, Commutative algebra, II (1960), Princeton, NJ, Van Nostrand Zbl0121.27801MR120249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.