Leader-following consensus of multiple linear systems under switching topologies: An averaging method
Wei Ni; Xiaoli Wang; Chun Xiong
Kybernetika (2012)
- Volume: 48, Issue: 6, page 1194-1210
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNi, Wei, Wang, Xiaoli, and Xiong, Chun. "Leader-following consensus of multiple linear systems under switching topologies: An averaging method." Kybernetika 48.6 (2012): 1194-1210. <http://eudml.org/doc/251408>.
@article{Ni2012,
abstract = {The leader-following consensus of multiple linear time invariant (LTI) systems under switching topology is considered. The leader-following consensus problem consists of designing for each agent a distributed protocol to make all agents track a leader vehicle, which has the same LTI dynamics as the agents. The interaction topology describing the information exchange of these agents is time-varying. An averaging method is proposed. Unlike the existing results in the literatures which assume the LTI agents to be neutrally stable, we relax this condition, only making assumption that the LTI agents are stablizable and detectable. Observer-based leader-following consensus is also considered.},
author = {Ni, Wei, Wang, Xiaoli, Xiong, Chun},
journal = {Kybernetika},
keywords = {consensus; multi-agent systems; averaging method; consensus; multi-agent systems; averaging method; linear time invariant (LTI) agents},
language = {eng},
number = {6},
pages = {1194-1210},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Leader-following consensus of multiple linear systems under switching topologies: An averaging method},
url = {http://eudml.org/doc/251408},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Ni, Wei
AU - Wang, Xiaoli
AU - Xiong, Chun
TI - Leader-following consensus of multiple linear systems under switching topologies: An averaging method
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 6
SP - 1194
EP - 1210
AB - The leader-following consensus of multiple linear time invariant (LTI) systems under switching topology is considered. The leader-following consensus problem consists of designing for each agent a distributed protocol to make all agents track a leader vehicle, which has the same LTI dynamics as the agents. The interaction topology describing the information exchange of these agents is time-varying. An averaging method is proposed. Unlike the existing results in the literatures which assume the LTI agents to be neutrally stable, we relax this condition, only making assumption that the LTI agents are stablizable and detectable. Observer-based leader-following consensus is also considered.
LA - eng
KW - consensus; multi-agent systems; averaging method; consensus; multi-agent systems; averaging method; linear time invariant (LTI) agents
UR - http://eudml.org/doc/251408
ER -
References
top- Aeyels, D., Peuteman, J., 10.1016/S0005-1098(99)00012-6, Automatica 35 (1999), 1091-1100. MR1831619DOI10.1016/S0005-1098(99)00012-6
- Bellman, R., Bentsman, J., Meerkov, S. M., 10.1109/TAC.1985.1103936, IEEE Trans. Automat. Control 30 (1985), 289-291. Zbl0557.93055MR0778437DOI10.1109/TAC.1985.1103936
- Bogoliubov, N. N., Mitropolsky, Y. A., Asymptotic Methods in the Theory of Nonlinear Oscillations., Gordon and Breach, New York 1961. MR0141845
- Cheng, D., Wang, J. H., Hu, X., 10.1109/TAC.2008.928332, IEEE Trans. Automat. Control 53 (2008), 1765-1770. MR2446396DOI10.1109/TAC.2008.928332
- Hong, Y., Gao, L., Cheng, D., Hu, J., 10.1109/TAC.2007.895860, IEEE Trans. Automat. Control 52 (2007), 943-948. MR2324260DOI10.1109/TAC.2007.895860
- Hong, Y., Hu, J., Gao, L., 10.1016/j.automatica.2006.02.013, Automatica 42 (2006), 1177-1182. MR2230987DOI10.1016/j.automatica.2006.02.013
- Horn, R., Johnson, C., Matrix Analysis., Cambridge University Press, New York 1985. Zbl0801.15001MR0832183
- Jadbabaie, A., Lin, J., Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules., IEEE Trans. Automat. Control 48 (2003), 943-948. MR1986266
- Khoo, S., Xie, L., Man, Z., Zhao, S., Observer-based robust finite-time cooperative consensus control for multi-agent networks., In: Proc. 4th IEEE Conference on Industrial Electronics and Applications, Xi'an 2009, pp. 1883-1888.
- Kosut, R. L., Anderson, B. D. O., Mareels, I. M. Y., 10.1109/TAC.1987.1104445, IEEE Trans. Automat. Control 32 (1987), 26-34. MR0868915DOI10.1109/TAC.1987.1104445
- Krasnosel'skii, M. A., Krein, S. G., On The Averaging Principle in Nonlinear Mechanics., Uspekhi Matem Nauk, 1955.
- Krylov, N., Bogoliubov, N., Introduction to Non-Linear Mechnnics., Princeton University Press, Princeton 1949.
- Liu, Y., Jia, Y., Du, J., Yuan, S., Dynamic output feedback control for consensus of multi-agent systems: an approach., In: Proc. American Control Conference, St. Louis 2009, pp. 4470-4475.
- Namerikawa, T., Yoshioka, C., Consensus control of observer-based multi-agent system with communication delay., In: Proc. SICE Annual Conference, Tokyo 2008, pp. 2414-2419.
- Ni, W., Cheng, D., 10.1016/j.sysconle.2010.01.006, Systems Control Lett. 59 (2010), 209-217. MR2642259DOI10.1016/j.sysconle.2010.01.006
- Olfati-Saber, R., Murray, R. M., 10.1109/TAC.2004.834113, IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR2086916DOI10.1109/TAC.2004.834113
- Olfati-Saber, R., Fax, J. A., Murray, R. M., Consensus and cooperation in networked multi-agent systems., Proc. IEEE 95 (2007), 215-233.
- Ren, W., Beard, R. W., 10.1109/TAC.2005.846556, IEEE Trans. Automat. Control 50 (2005), 655-661. MR2141568DOI10.1109/TAC.2005.846556
- Ren, W., Beard, R. W., Atkins, E., 10.1109/MCS.2007.338264, IEEE Control Syst. Mag. 27 (2007), 71-82. DOI10.1109/MCS.2007.338264
- Sanders, J. A., Verhulst, F., Murdock, J., Averaging Methods in Nonlinear Dynamical Systems. Second edition., Springer, New York 2007. MR2316999
- Seo, J. H., Shima, H., Back, J., 10.1016/j.automatica.2009.07.022, Automatica 45 (2009), 2659-2664. MR2889327DOI10.1016/j.automatica.2009.07.022
- Scardovi, L., Sepulchre, R., 10.1016/j.automatica.2009.07.006, Automatica 45 (2009), 2557-2562. MR2889312DOI10.1016/j.automatica.2009.07.006
- Stilwell, D. J., Bellt, E. M., Roberson, D. G., 10.1137/050625229, SIAM J. Appl. Dynam. Syst. 5 (2006), 140-157. MR2217133DOI10.1137/050625229
- Teel, A. R., Nesic, D., Averaging for a class of hybrid systems., Dynamics Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), 829-851. MR2757915
- Wang, J., Cheng, D., Hu, X., 10.1002/asjc.15, Asian J. Control 10 (2008), 144-155. MR2432647DOI10.1002/asjc.15
- Wang, X., Hong, Y., Parametrization and geometric analysis of coordination controllers for multi-agent systems., Kybernetika 45 (2009), 785-800. Zbl1209.93012MR2599112
- Wang, X., Hong, Y., Huang, J., Jiang, Z., 10.1109/TAC.2010.2076250, IEEE Trans. Automat. Control 55 (2010), 2891-2895. MR2767160DOI10.1109/TAC.2010.2076250
- Wang, X., Han, F., Robust coordination control of switching multi-agent systems via output regulation approach., Kybernetika 47 (2011), 755-772. Zbl1236.93010MR2850462
- Yoshioka, C., Namerikawa, T., Observer-based consensus control strategy for multi-agent system with communication time delay., In: Proc. 17th IEEE International Conference on Control Applications, San Antonio 2008, pp. 1037-1042.
- Zhang, H., Lewis, F. L., Das, A., 10.1109/TAC.2011.2139510, IEEE Trans. Automat. Control 56 (2011), 1948-1952. MR2856813DOI10.1109/TAC.2011.2139510
Citations in EuDML Documents
top- Wei Ni, Xiaoli Wang, Averaging approach to distributed convex optimization for continuous-time multi-agent systems
- Pengxiao Zhang, Jinhuan Wang, Event-triggered observer-based tracking control for leader-follower multi-agent systems
- Meiying Ou, Shengwei Gu, Xianbing Wang, Kexiu Dong, Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.