Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium
Kybernetika (2013)
- Volume: 49, Issue: 2, page 359-374
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWei, Zhouchao, and Wang, Zhen. "Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium." Kybernetika 49.2 (2013): 359-374. <http://eudml.org/doc/260572>.
@article{Wei2013,
abstract = {By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to achieve modified function projective synchronized between the extended Sprott E system and original Sprott E system. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.},
author = {Wei, Zhouchao, Wang, Zhen},
journal = {Kybernetika},
keywords = {chaotic attractors; stable equilibrium; Shilnikov theorem; Lyapunov exponent; synchronization; chaotic attractors; stable equilibrium; Shilnikov theorem; Lyapunov exponent; synchronization},
language = {eng},
number = {2},
pages = {359-374},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium},
url = {http://eudml.org/doc/260572},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Wei, Zhouchao
AU - Wang, Zhen
TI - Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 2
SP - 359
EP - 374
AB - By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to achieve modified function projective synchronized between the extended Sprott E system and original Sprott E system. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.
LA - eng
KW - chaotic attractors; stable equilibrium; Shilnikov theorem; Lyapunov exponent; synchronization; chaotic attractors; stable equilibrium; Shilnikov theorem; Lyapunov exponent; synchronization
UR - http://eudml.org/doc/260572
ER -
References
top- Chen, G. R., Ueta, T., 10.1142/S0218127499001024, Internat. J. Bifur. Chaos 9 (1999), 1465-1466. Zbl0962.37013MR1729683DOI10.1142/S0218127499001024
- Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2, J. Atmospheric Sci. 20 (1963), 130-141. DOI10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- Lü, J. H., Chen, G. R., 10.1142/S0218127402004620, Internat. J. Bifur. Chaos 12 (2002), 659-661. Zbl1063.34510MR1894886DOI10.1142/S0218127402004620
- Lü, J. H., Chen, G. R., Cheng, D. Z., 10.1142/S021812740401014X, Internat. J. Bifur. Chaos 14 (2004), 1507-1537. Zbl1129.37323MR2072347DOI10.1142/S021812740401014X
- Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R., 10.1016/j.automatica.2004.06.001, Automatica 40 (2004), 1677-1687. Zbl1162.93353MR2155461DOI10.1016/j.automatica.2004.06.001
- Lü, J. H., Yu, S. M., Leung, H., Chen, G. R., 10.1109/TCSI.2005.854412, IEEE Trans. Circuits Systems C I: Regular Papers 53 (2006), 149-165. DOI10.1109/TCSI.2005.854412
- Liu, Y. J., Pang, G. P., 10.1016/j.cnsns.2010.08.011, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 2065-2071. Zbl1221.34145MR2736072DOI10.1016/j.cnsns.2010.08.011
- Li, J. M., 10.1007/BF02972673, Qualit. Theory Dynam. Systems 6 (2005), 205-215. Zbl1142.34019MR2420857DOI10.1007/BF02972673
- Rössler, O. E., 10.1016/0375-9601(76)90101-8, Phys. Lett. A 57 (1976), 397-398. DOI10.1016/0375-9601(76)90101-8
- Silva, C. P., 10.1109/81.246142, IEEE Trans. Circuits Syst. I 40 (1993), 657-682. MR1255705DOI10.1109/81.246142
- Sprott, J. C., 10.1103/PhysRevE.50.R647, Phys. Rev. E 50 (1994), 647-650. MR1381868DOI10.1103/PhysRevE.50.R647
- Sprott, J. C., 10.1016/S0375-9601(00)00026-8, Phys. Lett. A 266 (2000), 19-23. DOI10.1016/S0375-9601(00)00026-8
- Sprott, J. C., 10.1016/S0375-9601(97)00088-1, Phys. Lett. A 228 (1997), 271-274. Zbl1043.37504MR1442639DOI10.1016/S0375-9601(97)00088-1
- Shilnikov, L. P., A case of the existence of a countable number of periodic motions., Soviet Math. Dokl. 6 (1965), 163-166.
- Shilnikov, L. P., 10.1070/SM1970v010n01ABEH001588, Math. USSR-Sb. 10 (1970), 91-102. DOI10.1070/SM1970v010n01ABEH001588
- Shaw, R., Strange attractor, chaotic behaviour and information flow., Z. Naturforsch. 36A (1981), 80-112. MR0604920
- Schrier, G. V., Maas, L. R. M., The difusionless Lorenz equations: Shilnikov bifurcations and reduction to an explicit map., Physica D 141 (2000), 19-36. MR1764166
- Vaněček, A., Čelikovský, S., Control Systems: From Linear Analysis to Synthesis of Chaos., Prentice-Hall, London 1996. Zbl0874.93006
- Wang, X., Chen, G. R., 10.1016/j.cnsns.2011.07.017, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. MR2843793DOI10.1016/j.cnsns.2011.07.017
- Wang, Z., 10.1007/s11071-009-9601-1, Nonlinear Dynamics 60(3) (2010), 369-373. Zbl1189.70103MR2645029DOI10.1007/s11071-009-9601-1
- Wei, Z. C., Dynamical behaviors of a chaotic system with no equilibria., Phys. Lett. A 376 (2011), 248-253. Zbl1255.37013MR2859307
- Yang, Q. G., Chen, G. R., Huang, K. F., 10.1142/S0218127407019792, Internat. J. Bifur. Chaos 17 (2007), 3929-3949. Zbl1149.37308MR2384392DOI10.1142/S0218127407019792
- Yang, Q. G., Chen, G. R., 10.1142/S0218127408021063, Internat. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl1147.34306MR2427132DOI10.1142/S0218127408021063
- Yang, Q. G., Wei, Z. C., Chen, G. R., 10.1142/S0218127410026320, Internat. J. Bifur. Chaos 20 (2010), 1061-1083. MR2660159DOI10.1142/S0218127410026320
- Yu, S. M., Lü, J. H., Yu, X. H., 10.1109/TCSI.2011.2180429, IEEE Trans. Circuits Systems C I: Regular Papers 59 (2012), 1015-1028. MR2924533DOI10.1109/TCSI.2011.2180429
- Zhao, L. Q., Wang, Q., 10.1007/s11425-009-0009-7, Sci. China Series A: Mathematics 52 (2009), 427-442. Zbl1192.34044MR2491762DOI10.1007/s11425-009-0009-7
Citations in EuDML Documents
top- Tao Zhao, Jian Xiao, Jialin Ding, Xuesong Deng, Song Wang, Relaxed stability conditions for interval type-2 fuzzy-model-based control systems
- Zhen Wang, Wei Sun, Zhouchao Wei, Xiaojian Xi, Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation
- Hassan Saberi Nik, Ping He, Sayyed Taha Talebian, Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria
- Ke Ding, Qing-Long Han, Synchronization of two coupled Hindmarsh-Rose neurons
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.