Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation
Zhi-cai Ma; Jie Wu; Yong-zheng Sun
Kybernetika (2017)
- Volume: 53, Issue: 5, page 838-852
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMa, Zhi-cai, Wu, Jie, and Sun, Yong-zheng. "Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation." Kybernetika 53.5 (2017): 838-852. <http://eudml.org/doc/294431>.
@article{Ma2017,
abstract = {This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.},
author = {Ma, Zhi-cai, Wu, Jie, Sun, Yong-zheng},
journal = {Kybernetika},
keywords = {finite-time synchronization; different dimensional chaotic systems; adaptive control; noise perturbation},
language = {eng},
number = {5},
pages = {838-852},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation},
url = {http://eudml.org/doc/294431},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Ma, Zhi-cai
AU - Wu, Jie
AU - Sun, Yong-zheng
TI - Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 838
EP - 852
AB - This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.
LA - eng
KW - finite-time synchronization; different dimensional chaotic systems; adaptive control; noise perturbation
UR - http://eudml.org/doc/294431
ER -
References
top- Aghababa, M. P., 10.1007/s11071-011-0261-6, Nonlinear Dynam. 69 (2012), 247-261. MR2929869DOI10.1007/s11071-011-0261-6
- Aghababa, M. P., Aghababa, H. P., 10.1007/s11071-012-0395-1, Nonlinear Dynam. 69 (2012), 1903-1914. Zbl1263.93111MR2945528DOI10.1007/s11071-012-0395-1
- Ahmad, I., Saaban, A. B., Ibrahima, A. B., Shahzadb, M., Naveedca, N., 10.1016/j.ijleo.2015.12.134, Optik 127 (2016), 4859-4871. DOI10.1016/j.ijleo.2015.12.134
- Ahmada, I., Shafiq, M., Saaban, A. B., Ibrahim, A. B., Shahzad, M., 10.1016/j.ijleo.2016.05.065, Optik 127 (2016), 8172-8185. DOI10.1016/j.ijleo.2016.05.065
- Bhat, S. P., Bernstein, D. S., 10.1137/s0363012997321358, SIAM J. Control Optim. 38 (2000), 751-766. Zbl0945.34039MR1756893DOI10.1137/s0363012997321358
- Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S., 10.1016/s0370-1573(02)00137-0, Phys. Rep. 366 (2002), 1-101. Zbl0995.37022MR1913567DOI10.1016/s0370-1573(02)00137-0
- Bowong, S., Kakmeni, M., Koina, R., 10.1016/j.matcom.2006.01.006, Math. Comput. Simulat. 71 (2006), 212-228. MR2222398DOI10.1016/j.matcom.2006.01.006
- Cai, N., Li, W. Q., Jing, Y. W., 10.1007/s11071-010-9869-1, Nonlinear Dynam. 64 (2011), 385-393. MR2803218DOI10.1007/s11071-010-9869-1
- Chen, X. Y., Lu, J. F., 10.1016/j.physleta.2006.11.092, Phys. Lett. A 364 (2007), 123-128. DOI10.1016/j.physleta.2006.11.092
- Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S., 10.1007/s11071-011-0244-7, Nonlinear Dynam. 69 (2012), 35-55. MR2929853DOI10.1007/s11071-011-0244-7
- Erban, R., Haskovec, J., Sun, Y., 10.1137/15m1030467, SIAM J. Appl. Math. 76 (2016), 1535-1557. MR3534479DOI10.1137/15m1030467
- Ge, Z. M., Yang, C. H., 10.1016/j.chaos.2006.05.090, Chaos Solitons and Fractals 35 (2008), 980-990. DOI10.1016/j.chaos.2006.05.090
- Ge, X. H., Yang, F. W., Han, Q. L., 10.1016/j.ins.2015.07.047, Inform. Sciences 380 (2017), 117-131. DOI10.1016/j.ins.2015.07.047
- Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities., Cambridge At The University Press, Cambridge 1934. Zbl0634.26008MR0944909
- Hauschildt, B., Jason, N. B., Balanov, A., Scholl, A., 10.1103/physreve.74.051906, Phys. Rev. E 74 (2006), 051906. MR2293732DOI10.1103/physreve.74.051906
- He, W. L., Chen, G. R., Han, Q. L., Qian, F., 10.1016/j.ins.2015.06.005, Inform. Sciences 380 (2017), 145-158. DOI10.1016/j.ins.2015.06.005
- He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J., 10.1016/j.automatica.2015.09.028, Automatica 62 (2015), 249-262. MR3423996DOI10.1016/j.automatica.2015.09.028
- He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D., Leader-following consensus of nonlinear multiagent systems with stochastic sampling., IEEE Trans. Cybern. 47 (2017), 327-338.
- Huang, D. B., 10.1103/physreve.71.037203, Phys. Rev. E. 71 (2005), 037203. DOI10.1103/physreve.71.037203
- Ke, D., Han, Q. L., 10.14736/kyb-2015-5-0784, Kybernetika 51 (2015), 784-799. MR3445984DOI10.14736/kyb-2015-5-0784
- Ke, D., Han, Q. L., 10.1002/cplx.21658, Complexity 21 (2016), 319-327. MR3508425DOI10.1002/cplx.21658
- Korniss, G., 10.1103/physreve.75.051121, Phys. Rev. E 75 (2007), 051121. DOI10.1103/physreve.75.051121
- Li, S. H., Tian, Y. P., 10.1016/s0960-0779(02)00100-5, Chaos Solitons and Fractals 15 (2003), 303-310. MR1926750DOI10.1016/s0960-0779(02)00100-5
- Lin, W., Chen, G. R., 10.1063/1.2183734, Chaos 16 (2006), 013134. Zbl1144.37375MR2220550DOI10.1063/1.2183734
- Lin, J. S., Yan, J. J., 10.1016/j.nonrwa.2007.12.005, Nonlinear Anal. RWA 10 (2009), 1151-1159. Zbl1167.37329MR2474288DOI10.1016/j.nonrwa.2007.12.005
- Ouannas, A., Odibat, Z., 10.1007/s11071-015-2026-0, Nonlinear Dynam. 81 (2015), 765-771. MR3355066DOI10.1007/s11071-015-2026-0
- Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
- Pikovsky, A., Rosenblum, M., Kurths, J., 10.1017/cbo9780511755743, Cambridge University Press, Cambridge 2001. MR1869044DOI10.1017/cbo9780511755743
- Pourmahmood, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.cnsns.2010.09.038, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868. Zbl1221.93131MR2772300DOI10.1016/j.cnsns.2010.09.038
- Stefanovska, A., Haken, H., McClintock, E., Hožič, M., Bajrović, F., Ribarič, S., 10.1103/physrevlett.85.4831, Phys. Rev. Lett. 85 (2000), 4831-4834. DOI10.1103/physrevlett.85.4831
- Sun, Y. Z., Li, W., Zhao, D. H., 10.1063/1.4731265, Chaos 22 (2012), 023152. MR3388569DOI10.1063/1.4731265
- Sun, Y. Z., Ruan, J., 10.1063/1.3262488, Chaos 19 (2009), 043113. DOI10.1063/1.3262488
- Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X., 10.1007/s11071-013-1145-8, Nonlinear Dynam. 76 (2014), 519-528. Zbl1319.37028MR3189189DOI10.1007/s11071-013-1145-8
- Vincent, U. E., Guo, R., 10.1016/j.physleta.2011.04.041, Phys. Lett. A 375 (2011), 2322-2326. Zbl1242.34078DOI10.1016/j.physleta.2011.04.041
- Wang, H., Han, Z. Z., Zhang, W., 10.1007/s11071-008-9364-0, Nonlinear Dynam. 55 (2009), 323-328. MR2472222DOI10.1007/s11071-008-9364-0
- Wu, J., Ma, Z. C., Sun, Y. Z., Liu, F., 10.14736/kyb-2015-1-0137, Kybernetika 54 (2015), 137-149. MR3333837DOI10.14736/kyb-2015-1-0137
- Yan, J. J., Hung, M. L., Chang, T. Y., Yang, Y. S., 10.1016/j.physleta.2006.03.047, Phys. Lett. A 356 (2006), 220-225. DOI10.1016/j.physleta.2006.03.047
- Yang, Y. Q., Wu, X. F., 10.1007/s11071-012-0442-y, Nonlinear Dynam. 70 (2012), 197-208. Zbl1267.93150MR2991264DOI10.1007/s11071-012-0442-y
- Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H., 10.1016/j.automatica.2011.08.050, Automatica 47 (2011), 2671-2677. Zbl1235.93254MR2886936DOI10.1016/j.automatica.2011.08.050
- Zhang, X. M., Han, Q. L., Yu, X. H., 10.1109/tii.2015.2506545, IEEE Trans. Ind. Informat. 12 (2016), 1740-1752. DOI10.1109/tii.2015.2506545
- Zhang, G., Liu, Z. R., Ma, Z. J., 10.1016/j.chaos.2005.11.099, Chaos Solitons and Fractals 32 (2007), 773-779. MR2280118DOI10.1016/j.chaos.2005.11.099
- Zhou, X. B., Jiang, M. R., Huang, Y. Q., 10.14736/kyb-2014-4-0632, Kybernetika 50 (2014), 632-642. Zbl1311.34120MR3275089DOI10.14736/kyb-2014-4-0632
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.