Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation

Zhi-cai Ma; Jie Wu; Yong-zheng Sun

Kybernetika (2017)

  • Volume: 53, Issue: 5, page 838-852
  • ISSN: 0023-5954

Abstract

top
This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.

How to cite

top

Ma, Zhi-cai, Wu, Jie, and Sun, Yong-zheng. "Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation." Kybernetika 53.5 (2017): 838-852. <http://eudml.org/doc/294431>.

@article{Ma2017,
abstract = {This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.},
author = {Ma, Zhi-cai, Wu, Jie, Sun, Yong-zheng},
journal = {Kybernetika},
keywords = {finite-time synchronization; different dimensional chaotic systems; adaptive control; noise perturbation},
language = {eng},
number = {5},
pages = {838-852},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation},
url = {http://eudml.org/doc/294431},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Ma, Zhi-cai
AU - Wu, Jie
AU - Sun, Yong-zheng
TI - Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 838
EP - 852
AB - This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.
LA - eng
KW - finite-time synchronization; different dimensional chaotic systems; adaptive control; noise perturbation
UR - http://eudml.org/doc/294431
ER -

References

top
  1. Aghababa, M. P., 10.1007/s11071-011-0261-6, Nonlinear Dynam. 69 (2012), 247-261. MR2929869DOI10.1007/s11071-011-0261-6
  2. Aghababa, M. P., Aghababa, H. P., 10.1007/s11071-012-0395-1, Nonlinear Dynam. 69 (2012), 1903-1914. Zbl1263.93111MR2945528DOI10.1007/s11071-012-0395-1
  3. Ahmad, I., Saaban, A. B., Ibrahima, A. B., Shahzadb, M., Naveedca, N., 10.1016/j.ijleo.2015.12.134, Optik 127 (2016), 4859-4871. DOI10.1016/j.ijleo.2015.12.134
  4. Ahmada, I., Shafiq, M., Saaban, A. B., Ibrahim, A. B., Shahzad, M., 10.1016/j.ijleo.2016.05.065, Optik 127 (2016), 8172-8185. DOI10.1016/j.ijleo.2016.05.065
  5. Bhat, S. P., Bernstein, D. S., 10.1137/s0363012997321358, SIAM J. Control Optim. 38 (2000), 751-766. Zbl0945.34039MR1756893DOI10.1137/s0363012997321358
  6. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S., 10.1016/s0370-1573(02)00137-0, Phys. Rep. 366 (2002), 1-101. Zbl0995.37022MR1913567DOI10.1016/s0370-1573(02)00137-0
  7. Bowong, S., Kakmeni, M., Koina, R., 10.1016/j.matcom.2006.01.006, Math. Comput. Simulat. 71 (2006), 212-228. MR2222398DOI10.1016/j.matcom.2006.01.006
  8. Cai, N., Li, W. Q., Jing, Y. W., 10.1007/s11071-010-9869-1, Nonlinear Dynam. 64 (2011), 385-393. MR2803218DOI10.1007/s11071-010-9869-1
  9. Chen, X. Y., Lu, J. F., 10.1016/j.physleta.2006.11.092, Phys. Lett. A 364 (2007), 123-128. DOI10.1016/j.physleta.2006.11.092
  10. Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S., 10.1007/s11071-011-0244-7, Nonlinear Dynam. 69 (2012), 35-55. MR2929853DOI10.1007/s11071-011-0244-7
  11. Erban, R., Haskovec, J., Sun, Y., 10.1137/15m1030467, SIAM J. Appl. Math. 76 (2016), 1535-1557. MR3534479DOI10.1137/15m1030467
  12. Ge, Z. M., Yang, C. H., 10.1016/j.chaos.2006.05.090, Chaos Solitons and Fractals 35 (2008), 980-990. DOI10.1016/j.chaos.2006.05.090
  13. Ge, X. H., Yang, F. W., Han, Q. L., 10.1016/j.ins.2015.07.047, Inform. Sciences 380 (2017), 117-131. DOI10.1016/j.ins.2015.07.047
  14. Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities., Cambridge At The University Press, Cambridge 1934. Zbl0634.26008MR0944909
  15. Hauschildt, B., Jason, N. B., Balanov, A., Scholl, A., 10.1103/physreve.74.051906, Phys. Rev. E 74 (2006), 051906. MR2293732DOI10.1103/physreve.74.051906
  16. He, W. L., Chen, G. R., Han, Q. L., Qian, F., 10.1016/j.ins.2015.06.005, Inform. Sciences 380 (2017), 145-158. DOI10.1016/j.ins.2015.06.005
  17. He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J., 10.1016/j.automatica.2015.09.028, Automatica 62 (2015), 249-262. MR3423996DOI10.1016/j.automatica.2015.09.028
  18. He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D., Leader-following consensus of nonlinear multiagent systems with stochastic sampling., IEEE Trans. Cybern. 47 (2017), 327-338. 
  19. Huang, D. B., 10.1103/physreve.71.037203, Phys. Rev. E. 71 (2005), 037203. DOI10.1103/physreve.71.037203
  20. Ke, D., Han, Q. L., 10.14736/kyb-2015-5-0784, Kybernetika 51 (2015), 784-799. MR3445984DOI10.14736/kyb-2015-5-0784
  21. Ke, D., Han, Q. L., 10.1002/cplx.21658, Complexity 21 (2016), 319-327. MR3508425DOI10.1002/cplx.21658
  22. Korniss, G., 10.1103/physreve.75.051121, Phys. Rev. E 75 (2007), 051121. DOI10.1103/physreve.75.051121
  23. Li, S. H., Tian, Y. P., 10.1016/s0960-0779(02)00100-5, Chaos Solitons and Fractals 15 (2003), 303-310. MR1926750DOI10.1016/s0960-0779(02)00100-5
  24. Lin, W., Chen, G. R., 10.1063/1.2183734, Chaos 16 (2006), 013134. Zbl1144.37375MR2220550DOI10.1063/1.2183734
  25. Lin, J. S., Yan, J. J., 10.1016/j.nonrwa.2007.12.005, Nonlinear Anal. RWA 10 (2009), 1151-1159. Zbl1167.37329MR2474288DOI10.1016/j.nonrwa.2007.12.005
  26. Ouannas, A., Odibat, Z., 10.1007/s11071-015-2026-0, Nonlinear Dynam. 81 (2015), 765-771. MR3355066DOI10.1007/s11071-015-2026-0
  27. Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
  28. Pikovsky, A., Rosenblum, M., Kurths, J., 10.1017/cbo9780511755743, Cambridge University Press, Cambridge 2001. MR1869044DOI10.1017/cbo9780511755743
  29. Pourmahmood, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.cnsns.2010.09.038, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868. Zbl1221.93131MR2772300DOI10.1016/j.cnsns.2010.09.038
  30. Stefanovska, A., Haken, H., McClintock, E., Hožič, M., Bajrović, F., Ribarič, S., 10.1103/physrevlett.85.4831, Phys. Rev. Lett. 85 (2000), 4831-4834. DOI10.1103/physrevlett.85.4831
  31. Sun, Y. Z., Li, W., Zhao, D. H., 10.1063/1.4731265, Chaos 22 (2012), 023152. MR3388569DOI10.1063/1.4731265
  32. Sun, Y. Z., Ruan, J., 10.1063/1.3262488, Chaos 19 (2009), 043113. DOI10.1063/1.3262488
  33. Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X., 10.1007/s11071-013-1145-8, Nonlinear Dynam. 76 (2014), 519-528. Zbl1319.37028MR3189189DOI10.1007/s11071-013-1145-8
  34. Vincent, U. E., Guo, R., 10.1016/j.physleta.2011.04.041, Phys. Lett. A 375 (2011), 2322-2326. Zbl1242.34078DOI10.1016/j.physleta.2011.04.041
  35. Wang, H., Han, Z. Z., Zhang, W., 10.1007/s11071-008-9364-0, Nonlinear Dynam. 55 (2009), 323-328. MR2472222DOI10.1007/s11071-008-9364-0
  36. Wu, J., Ma, Z. C., Sun, Y. Z., Liu, F., 10.14736/kyb-2015-1-0137, Kybernetika 54 (2015), 137-149. MR3333837DOI10.14736/kyb-2015-1-0137
  37. Yan, J. J., Hung, M. L., Chang, T. Y., Yang, Y. S., 10.1016/j.physleta.2006.03.047, Phys. Lett. A 356 (2006), 220-225. DOI10.1016/j.physleta.2006.03.047
  38. Yang, Y. Q., Wu, X. F., 10.1007/s11071-012-0442-y, Nonlinear Dynam. 70 (2012), 197-208. Zbl1267.93150MR2991264DOI10.1007/s11071-012-0442-y
  39. Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H., 10.1016/j.automatica.2011.08.050, Automatica 47 (2011), 2671-2677. Zbl1235.93254MR2886936DOI10.1016/j.automatica.2011.08.050
  40. Zhang, X. M., Han, Q. L., Yu, X. H., 10.1109/tii.2015.2506545, IEEE Trans. Ind. Informat. 12 (2016), 1740-1752. DOI10.1109/tii.2015.2506545
  41. Zhang, G., Liu, Z. R., Ma, Z. J., 10.1016/j.chaos.2005.11.099, Chaos Solitons and Fractals 32 (2007), 773-779. MR2280118DOI10.1016/j.chaos.2005.11.099
  42. Zhou, X. B., Jiang, M. R., Huang, Y. Q., 10.14736/kyb-2014-4-0632, Kybernetika 50 (2014), 632-642. Zbl1311.34120MR3275089DOI10.14736/kyb-2014-4-0632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.