On module categories with nilpotent infinite radical

Otto Kerner; Andrzej Skowroński

Compositio Mathematica (1991)

  • Volume: 77, Issue: 3, page 313-333
  • ISSN: 0010-437X

How to cite

top

Kerner, Otto, and Skowroński, Andrzej. "On module categories with nilpotent infinite radical." Compositio Mathematica 77.3 (1991): 313-333. <http://eudml.org/doc/90076>.

@article{Kerner1991,
author = {Kerner, Otto, Skowroński, Andrzej},
journal = {Compositio Mathematica},
keywords = {finite dimensional k-algebra; category of finitely generated right A- modules; infinite radical; left or right T-nilpotent; tame; representation-finite; standard representation-infinite self-injective algebra; domestic; repetitive algebra; representation-infinite tilted algebra},
language = {eng},
number = {3},
pages = {313-333},
publisher = {Kluwer Academic Publishers},
title = {On module categories with nilpotent infinite radical},
url = {http://eudml.org/doc/90076},
volume = {77},
year = {1991},
}

TY - JOUR
AU - Kerner, Otto
AU - Skowroński, Andrzej
TI - On module categories with nilpotent infinite radical
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 77
IS - 3
SP - 313
EP - 333
LA - eng
KW - finite dimensional k-algebra; category of finitely generated right A- modules; infinite radical; left or right T-nilpotent; tame; representation-finite; standard representation-infinite self-injective algebra; domestic; repetitive algebra; representation-infinite tilted algebra
UR - http://eudml.org/doc/90076
ER -

References

top
  1. [1] M. Auslander: Representation theory of Artin algebras II. Comm. Algebra1 (1974), 269-310. Zbl0285.16029MR349747
  2. [AS1] I. Assem, A. Skowroński: On some classes of simply connected algebras. Proc. London Math. Soc.56 (1988), 417-450. Zbl0617.16018MR931509
  3. [AS2] I. Assem, A. Skowroński: Algebras with cycle-finite derived categories. Math. Ann.280 (1988), 441-463. Zbl0617.16017MR936322
  4. [ANS] I. Assem, J. Nehring, A. Skowroński: Domestic trivial extensions of simply connected algebras. Tsukuba J. Math.13 (1989), 31-72. Zbl0686.16011MR1003591
  5. [BG] K. Bongartz, P. Gabriel: Covering spaces in representation theory. Invent. Math.65 (1982), 331-378. Zbl0482.16026MR643558
  6. [CB] W.W. Crawley-Boevey: On tame algebras and BOCSES. Proc. London Math. Soc.56 (1988), 451-483. Zbl0661.16026MR931510
  7. [D] Ju. A. Drozd: Tame and wild matrix problems. Proc. ICRA II ( Ottawa 1979), Springer Lecture Notes in Mathematics832 (1980), 242-258. Zbl0457.16018MR607157
  8. [DS] P. Dowbor, A. Skowroński: Galois coverings of representation-infinite algebras. Comment. Math. Helv.62 (1987), 311-337. Zbl0628.16019MR896100
  9. [ES] K. Erdmann, A. Skowroński: On Auslander-Reiten components of blocks and selfinjective biserial algebras. To appear. Zbl0757.16004
  10. [F] U. Fischbacher: Une nouvelle preuve d'une théorème de Nazarova et Roiter. C. R. Acad. Sci. Paris, t. 300, Sèrie I, Nr. 9 (1985), 259-262. Zbl0586.16012MR785064
  11. [HW] D. Hughes, J. Waschbüsch: Trivial extensions of tilted algebras. Proc. London Math. Soc.46 (1983), 347-364. Zbl0488.16021MR693045
  12. [K] O. Kerner: Tilting wild algebras. J. London Math. Soc.39 (1989), 29-47. Zbl0675.16013MR989917
  13. [NS] F. Nehring, A. Skowroński: Polynomial growth trivial extensions of simply connected algebras. Fundamenta Math.132 (1989), 117-134. Zbl0677.16008MR1002626
  14. [PS] Z. Pogorzaly, A. Skowroński: Selfinjective biserial standard algebras. To appear in J. Algebra. Zbl0808.16019
  15. [R1] C.M. Ringel: Report on the Brauer-Thrall conjectures: Roiter's theorem and the theorem of Nazarova and Roiter. In Representation theory I, Springer Lecture Notes in Mathematics831 (1980), 104-136. Zbl0444.16019MR607142
  16. [R2] C.M. Ringel: Tame algebras. In Representation theory I, Springer Lecture Notes in Mathematics831 (1980), 137-287. Zbl0448.16019MR607143
  17. [R3] C.M. Ringel: Tame algebras and integral quadratic forms. Springer Lecture Notes in Mathematics1099 (1984). Zbl0546.16013MR774589
  18. [S1] A. Skowroński: Algebras of polynomial growth. In Topics in Algebra, Banach Center177-199. Zbl0729.16005MR1016089
  19. [S2] A. Skowroński: Algebras of polynomial growth. In Topics in Algebra, Banach Center Publications, vol. 26, to appear. Zbl0729.16005MR1171252

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.