Kolmogorov problem in W r H ω [ 0 , 1 ] and extremal Zolotarev ω-splines

Bagdasarov Sergey K.

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1998

Abstract

top
AbstractThe main result of the paper, based on the Borsuk Antipodality Theorem, describes extremal functions of the Kolmogorov-Landau problem(*) f ( m ) ( ξ ) s u p , f W r H ω [ ξ , b ] , | | f | | [ a , b ] B ,for all 0 < m ≤ r, ξ ≤ a or ξ = (a+b)/2, all B > 0 and concave moduli of continuity ω on ℝ₊. It is shown that any extremal function = B , r , m , ω , ξ of the problem (*) enjoys the following two characteristic properties. First, the function ( r ) ( · ) - ( r ) ( ξ ) is extremal for the problem(**) ξ b h ( t ) ψ ( t ) d t s u p , h H ω [ ξ , b ] , h(ξ) = 0,for an appropriate choice of the kernel ψ with a finite number of sign changes on [ξ,b]. Second, the function equioscillates n = n(B,r,m,ω,ξ) ≥ r+1 times on the interval [a,b] between -B and B. This analogy with the properties of extremal functions in the linear case ω(t) = t of the problem (*) makes it natural to call these functions the Zolotarev and Chebyshev ω-splines.As in the linear case ω(t)=t, the solution of the problem (*) leads to the qualitative description of extremal functions and sharp additive inequalities for intermediate derivatives in the celebrated Kolmogorov problems on the infinite intervals I = ℝ or ℝ₊: | | f ( m ) | | ( I ) s u p , f W r H ω ( I ) , | | f | | ( I ) B , 0 < m ≤ r.CONTENTS0. Introduction...........................................................................................51. Extrema of functionals in H ω [ a , b ] and perfect ω-splines................112. Auxiliary results...................................................................................223. Formulation of the main result.............................................................254. Proof of the main result.......................................................................325. The extrapolation problem...................................................................546. Maximization of functionals in H ω [ a , a ] , -∞ ≤ a₁ < a₂ ≤ ∞..............567. Euler ω-splines on the finite interval....................................................62Appendix A. Construction of Chebyshev splines.....................................68Appendix B. Construction of Zolotarev splines........................................70References.............................................................................................781991 Mathematics Subject Classification: Primary 41A17, 41A44; Secondary 26A15, 26A16, 26A51, 26D10, 46N10, 46N40, 47G10, 52A40, 58C30, 65D07, 65D25, 90C29, 90C26, 90C30.

How to cite

top

Bagdasarov Sergey K.. Kolmogorov problem in $W^rH^ω[0,1]$ and extremal Zolotarev ω-splines. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1998. <http://eudml.org/doc/271243>.

@book{BagdasarovSergeyK1998,
abstract = {AbstractThe main result of the paper, based on the Borsuk Antipodality Theorem, describes extremal functions of the Kolmogorov-Landau problem(*) $f^\{(m)\}(ξ) → sup$, $f ∈ W^rH^ω[ξ,b]$, $||f||_\{ℂ[a,b]\} ≤ B$,for all 0 < m ≤ r, ξ ≤ a or ξ = (a+b)/2, all B > 0 and concave moduli of continuity ω on ℝ₊. It is shown that any extremal function $ = _\{B,r,m,ω,ξ\}$ of the problem (*) enjoys the following two characteristic properties. First, the function $^\{(r)\}(·) - ^\{(r)\}(ξ)$ is extremal for the problem(**) $∫_ξ^b h(t)ψ(t)dt → sup$, $h ∈ H^ω[ξ,b]$, h(ξ) = 0,for an appropriate choice of the kernel ψ with a finite number of sign changes on [ξ,b]. Second, the function equioscillates n = n(B,r,m,ω,ξ) ≥ r+1 times on the interval [a,b] between -B and B. This analogy with the properties of extremal functions in the linear case ω(t) = t of the problem (*) makes it natural to call these functions the Zolotarev and Chebyshev ω-splines.As in the linear case ω(t)=t, the solution of the problem (*) leads to the qualitative description of extremal functions and sharp additive inequalities for intermediate derivatives in the celebrated Kolmogorov problems on the infinite intervals I = ℝ or ℝ₊:$||f^\{(m)\}||_\{_∞(I)\} → sup$, $f ∈ W^rH^ω(I)$, $||f||_\{_∞(I)\} ≤ B$, 0 < m ≤ r.CONTENTS0. Introduction...........................................................................................51. Extrema of functionals in $H^ω[a,b]$ and perfect ω-splines................112. Auxiliary results...................................................................................223. Formulation of the main result.............................................................254. Proof of the main result.......................................................................325. The extrapolation problem...................................................................546. Maximization of functionals in $H^ω[a₁,a₂]$, -∞ ≤ a₁ < a₂ ≤ ∞..............567. Euler ω-splines on the finite interval....................................................62Appendix A. Construction of Chebyshev splines.....................................68Appendix B. Construction of Zolotarev splines........................................70References.............................................................................................781991 Mathematics Subject Classification: Primary 41A17, 41A44; Secondary 26A15, 26A16, 26A51, 26D10, 46N10, 46N40, 47G10, 52A40, 58C30, 65D07, 65D25, 90C29, 90C26, 90C30.},
author = {Bagdasarov Sergey K.},
keywords = {Chebyshev and Zolotarev polynomials; perfect polynomial splines; Sobolev classes $W^r_∞(I)$; Lipschitz and Hölder classes $W^rH^α(I)$; Weyl-Hölder-Nikol’skiĭ classes $W^rH^ω(I)$; Kolmogorov-Landau problem of sharp inequalities for intermediate derivatives; modulus of continuity of a continuous function; concave modulus of continuity ω; Korneĭchuk Lemma on maximization of integral functionals with simple kernels; Borsuk Antipodality Theorem; perfect ω-splines; extremal rearrangements; numerical differentiation formulae; Zolotarev, Chebyshev and Euler perfect ω-splines; Sobolev classes; Lipschitz and Hölder classes; Weyl-Hölder-Nikolskij classes},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Kolmogorov problem in $W^rH^ω[0,1]$ and extremal Zolotarev ω-splines},
url = {http://eudml.org/doc/271243},
year = {1998},
}

TY - BOOK
AU - Bagdasarov Sergey K.
TI - Kolmogorov problem in $W^rH^ω[0,1]$ and extremal Zolotarev ω-splines
PY - 1998
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractThe main result of the paper, based on the Borsuk Antipodality Theorem, describes extremal functions of the Kolmogorov-Landau problem(*) $f^{(m)}(ξ) → sup$, $f ∈ W^rH^ω[ξ,b]$, $||f||_{ℂ[a,b]} ≤ B$,for all 0 < m ≤ r, ξ ≤ a or ξ = (a+b)/2, all B > 0 and concave moduli of continuity ω on ℝ₊. It is shown that any extremal function $ = _{B,r,m,ω,ξ}$ of the problem (*) enjoys the following two characteristic properties. First, the function $^{(r)}(·) - ^{(r)}(ξ)$ is extremal for the problem(**) $∫_ξ^b h(t)ψ(t)dt → sup$, $h ∈ H^ω[ξ,b]$, h(ξ) = 0,for an appropriate choice of the kernel ψ with a finite number of sign changes on [ξ,b]. Second, the function equioscillates n = n(B,r,m,ω,ξ) ≥ r+1 times on the interval [a,b] between -B and B. This analogy with the properties of extremal functions in the linear case ω(t) = t of the problem (*) makes it natural to call these functions the Zolotarev and Chebyshev ω-splines.As in the linear case ω(t)=t, the solution of the problem (*) leads to the qualitative description of extremal functions and sharp additive inequalities for intermediate derivatives in the celebrated Kolmogorov problems on the infinite intervals I = ℝ or ℝ₊:$||f^{(m)}||_{_∞(I)} → sup$, $f ∈ W^rH^ω(I)$, $||f||_{_∞(I)} ≤ B$, 0 < m ≤ r.CONTENTS0. Introduction...........................................................................................51. Extrema of functionals in $H^ω[a,b]$ and perfect ω-splines................112. Auxiliary results...................................................................................223. Formulation of the main result.............................................................254. Proof of the main result.......................................................................325. The extrapolation problem...................................................................546. Maximization of functionals in $H^ω[a₁,a₂]$, -∞ ≤ a₁ < a₂ ≤ ∞..............567. Euler ω-splines on the finite interval....................................................62Appendix A. Construction of Chebyshev splines.....................................68Appendix B. Construction of Zolotarev splines........................................70References.............................................................................................781991 Mathematics Subject Classification: Primary 41A17, 41A44; Secondary 26A15, 26A16, 26A51, 26D10, 46N10, 46N40, 47G10, 52A40, 58C30, 65D07, 65D25, 90C29, 90C26, 90C30.
LA - eng
KW - Chebyshev and Zolotarev polynomials; perfect polynomial splines; Sobolev classes $W^r_∞(I)$; Lipschitz and Hölder classes $W^rH^α(I)$; Weyl-Hölder-Nikol’skiĭ classes $W^rH^ω(I)$; Kolmogorov-Landau problem of sharp inequalities for intermediate derivatives; modulus of continuity of a continuous function; concave modulus of continuity ω; Korneĭchuk Lemma on maximization of integral functionals with simple kernels; Borsuk Antipodality Theorem; perfect ω-splines; extremal rearrangements; numerical differentiation formulae; Zolotarev, Chebyshev and Euler perfect ω-splines; Sobolev classes; Lipschitz and Hölder classes; Weyl-Hölder-Nikolskij classes
UR - http://eudml.org/doc/271243
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.