Probabilistic Sobolev embeddings and applications

Nicolas Burq; Gilles Lebeau

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 6, page 917-962
  • ISSN: 0012-9593

Abstract

top
In this article, we give probabilistic versions of Sobolev embeddings on any Riemannian manifold ( M , g ) . More precisely, we prove that for natural probability measures on L 2 ( M ) , almost every function belongs to all spaces L p ( M ) , p < + . We then give applications to the study of the growth of the L p norms of spherical harmonics on spheres 𝕊 d : we prove (again for natural probability measures) that almost every Hilbert base of L 2 ( 𝕊 d ) made of spherical harmonics has all its elements uniformly bounded in all L p ( 𝕊 d ) , p < + spaces. We also prove similar results on tori 𝕋 d . We give then an application to the study of the decay rate of damped wave equations in a framework where the geometric control property of Bardos-Lebeau-Rauch is not satisfied. Assuming that it is violated for a measure 0 set of trajectories, we prove that there exists almost surely a rate. Finally, we conclude with an application to the study of the H 1 -supercritical wave equation, for which we prove that for almost all initial data, the weak solutions are strong and unique, locally in time.

How to cite

top

Burq, Nicolas, and Lebeau, Gilles. "Injections de Sobolev probabilistes et applications." Annales scientifiques de l'École Normale Supérieure 46.6 (2013): 917-962. <http://eudml.org/doc/272140>.

@article{Burq2013,
abstract = {On démontre dans cet article des versions probabilistes des injections de Sobolev sur une variété riemannienne compacte, $(M,g)$. Plus précisément on démontre que pour des mesures de probabilité naturelles sur l’espace $L^2(M)$, presque toute fonction appartient à tous les espaces $L^p(M)$, $p&lt;+\infty $. On donne ensuite des applications à l’étude des harmoniques sphériques sur la sphère $\mathbb \{S\}^d$ : on démontre (encore pour des mesures de probabilité naturelles) que presque toute base hilbertienne de $L^2( \mathbb \{S\}^d)$ formée d’harmoniques sphériques a tous ses éléments uniformément bornés dans tous les espaces $L^p(\mathbb \{S\}^d), p&lt;+\infty $. On démontre aussi des résultats similaires sur les tores $\mathbb \{T\}^d$. On donne aussi une application à l’étude du taux de décroissance de l’équation des ondes amortie dans un cadre où la condition de contrôle géométrique de Bardos, Lebeau et Rauch n’est pas vérifiée. En supposant le flot ergodique, on démontre qu’il existe sur des ensembles de mesure arbitrairement proche de $1$ (dans l’espace des données initiales d’énergie finie), un taux de décroissance uniforme. Finalement, on conclut avec une application à l’étude de l’équation des ondes semi-linéaire $H^1$-surcritique, pour laquelle on démontre que pour presque toute donnée initiale, les solutions faibles sont fortes et uniques (localement en temps).},
author = {Burq, Nicolas, Lebeau, Gilles},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {measure concentration; Weyl formula; damped wave equations; nonlinear wave equations; eigenfunctions},
language = {fre},
number = {6},
pages = {917-962},
publisher = {Société mathématique de France},
title = {Injections de Sobolev probabilistes et applications},
url = {http://eudml.org/doc/272140},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Burq, Nicolas
AU - Lebeau, Gilles
TI - Injections de Sobolev probabilistes et applications
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 6
SP - 917
EP - 962
AB - On démontre dans cet article des versions probabilistes des injections de Sobolev sur une variété riemannienne compacte, $(M,g)$. Plus précisément on démontre que pour des mesures de probabilité naturelles sur l’espace $L^2(M)$, presque toute fonction appartient à tous les espaces $L^p(M)$, $p&lt;+\infty $. On donne ensuite des applications à l’étude des harmoniques sphériques sur la sphère $\mathbb {S}^d$ : on démontre (encore pour des mesures de probabilité naturelles) que presque toute base hilbertienne de $L^2( \mathbb {S}^d)$ formée d’harmoniques sphériques a tous ses éléments uniformément bornés dans tous les espaces $L^p(\mathbb {S}^d), p&lt;+\infty $. On démontre aussi des résultats similaires sur les tores $\mathbb {T}^d$. On donne aussi une application à l’étude du taux de décroissance de l’équation des ondes amortie dans un cadre où la condition de contrôle géométrique de Bardos, Lebeau et Rauch n’est pas vérifiée. En supposant le flot ergodique, on démontre qu’il existe sur des ensembles de mesure arbitrairement proche de $1$ (dans l’espace des données initiales d’énergie finie), un taux de décroissance uniforme. Finalement, on conclut avec une application à l’étude de l’équation des ondes semi-linéaire $H^1$-surcritique, pour laquelle on démontre que pour presque toute donnée initiale, les solutions faibles sont fortes et uniques (localement en temps).
LA - fre
KW - measure concentration; Weyl formula; damped wave equations; nonlinear wave equations; eigenfunctions
UR - http://eudml.org/doc/272140
ER -

References

top
  1. [1] N. Anantharaman, Spectral deviations for the damped wave equation, Geom. Funct. Anal.20 (2010), 593–626. Zbl1205.35173MR2720225
  2. [2] M. Asch & G. Lebeau, The spectrum of the damped wave operator for a bounded domain in 𝐑 2 , Experiment. Math.12 (2003), 227–241. Zbl1061.35064MR2016708
  3. [3] A. Ayache & N. Tzvetkov, L p properties for Gaussian random series, Trans. Amer. Math. Soc.360 (2008), 4425–4439. Zbl1145.60019MR2395179
  4. [4] C. Bardos, G. Lebeau & J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim.30 (1992), 1024–1065. Zbl0786.93009MR1178650
  5. [5] A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse Math. Grenzg. 93, Springer, 1978. Zbl0387.53010MR496885
  6. [6] M. D. Blair, H. F. Smith & C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire26 (2009), 1817–1829. Zbl1198.58012MR2566711
  7. [7] D. D. Bleecker, Nonperturbative conformal quantum gravity, Classical Quantum Gravity4 (1987), 827–849. Zbl0653.53060MR895904
  8. [8] J. Bourgain, Eigenfunction bounds for the Laplacian on the n -torus, Int. Math. Res. Not.1993 (1993), 61–66. Zbl0779.58039MR1208826
  9. [9] J. Bourgain, Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces, Israel J. Math.193 (2013), 441–458. Zbl1271.42039MR3038558
  10. [10] J. Bourgain & Z. Rudnick, Restriction of toral eigenfunctions to hypersurfaces and nodal sets, Geom. Funct. Anal.22 (2012), 878–937. Zbl1276.53047MR2984120
  11. [11] N. Burq, G. Lebeau & F. Planchon, Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc.21 (2008), 831–845. Zbl1204.35119MR2393429
  12. [12] N. Burq & N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math. 173 (2008), 449–475. Zbl1156.35062MR2425133
  13. [13] N. Burq & N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, preprint arXiv:1103.2222. MR3141727
  14. [14] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Lecture Note Series 268, Cambridge University Press, 1999. Zbl0926.35002MR1735654
  15. [15] I. Gallagher & P. Gérard, Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl.80 (2001), 1–49. Zbl0980.35088MR1810508
  16. [16] E. Grosswald, Representations of integers as sums of squares, Springer, 1985. Zbl0574.10045MR803155
  17. [17] V. Guillemin, Some classical theorems in spectral theory revisited, in Seminar on singularities of solutions of linear partial differential equations (Inst. Adv. Study, Princeton, N.J., 1977/78), Ann. of Math. Stud. 91, Princeton Univ. Press, 1979, 219–259. MR547021
  18. [18] L. Hörmander, The spectral function of an elliptic operator, Acta Math.121 (1968), 193–218. Zbl0164.13201MR609014
  19. [19] L. Hörmander, The analysis of linear partial differential operators. IV, Grund. Math. Wiss. 275, Springer, 1985. Zbl0601.35001
  20. [20] O. Ivanovici, Counterexamples to Strichartz estimates for the wave equation in domains, Math. Ann.347 (2010), 627–673. Zbl1201.35060MR2640046
  21. [21] V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer Monographs in Math., Springer, 1998. Zbl0906.35003MR1631419
  22. [22] S. Kakutani, On equivalence of infinite product measures, Ann. of Math.49 (1948), 214–224. Zbl0030.02303MR23331
  23. [23] Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc.321 (1990), 505–524. Zbl0714.60019MR1025756
  24. [24] G. Lebeau, Équation des ondes amorties, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud. 19, Kluwer Acad. Publ., 1996, 73–109. MR1385677
  25. [25] M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs 89, Amer. Math. Soc., 2001. Zbl0995.60002MR1849347
  26. [26] D. Li & H. Queffélec, Introduction à l’étude des espaces de Banach, Cours Spécialisés 12, Soc. Math. France, 2004. 
  27. [27] A. Martinez, An introduction to semiclassical and microlocal analysis, Universitext, Springer, 2002. Zbl0994.35003MR1872698
  28. [28] F. Morgan, Measures on spaces of surfaces, Arch. Rational Mech. Anal.78 (1982), 335–359. Zbl0529.58031MR653546
  29. [29] B. Shiffman & S. Zelditch, Random polynomials of high degree and Levy concentration of measure, Asian J. Math.7 (2003), 627–646. Zbl1060.32012MR2074895
  30. [30] J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci.36 (2000), 573–611. Zbl0984.35121MR1798488
  31. [31] H. F. Smith & C. D. Sogge, On the L p norm of spectral clusters for compact manifolds with boundary, to appear in Acta Math. Zbl1189.58017MR2316270
  32. [32] C. D. Sogge, Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal.77 (1988), 123–138. Zbl0641.46011MR930395
  33. [33] C. D. Sogge, Eigenfunction and Bochner Riesz estimates on manifolds with boundary, Math. Res. Lett.9 (2002), 205–216. Zbl1017.58016MR1903059
  34. [34] M. Struwe, On uniqueness and stability for supercritical nonlinear wave and Schrödinger equations, Int. Math. Res. Not. 2006 (2006), Art. ID 76737, 14. MR2211155
  35. [35] N. Tzvetkov, Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble) 58 (2008), 2543–2604. Zbl1171.35116MR2498359
  36. [36] N. Tzvetkov, Riemannian analogue of a Paley Sygmund theorem, Séminaire É.D.P., exposé no XV (2008–2009), 1–14. MR2668635
  37. [37] J. M. VanderKam, L norms and quantum ergodicity on the sphere, Int. Math. Res. Not.1997 (1997), 329–347. Zbl0877.58056MR1440572
  38. [38] S. Zelditch, A random matrix model for quantum mixing, Int. Math. Res. Not.1996 (1996), 115–137. Zbl0858.58048MR1383753
  39. [39] S. Zelditch, Real and complex zeros of Riemannian random waves, in Spectral analysis in geometry and number theory, Contemp. Math. 484, Amer. Math. Soc., 2009, 321–342. Zbl1176.58021MR1500155
  40. [40] M. Zworski, Semiclassical analysis, Graduate Studies in Math. 138, Amer. Math. Soc., 2012. MR2952218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.