Hodge-Tate and de Rham representations in the imperfect residue field case
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 2, page 341-355
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMorita, Kazuma. "Hodge-Tate and de Rham representations in the imperfect residue field case." Annales scientifiques de l'École Normale Supérieure 43.2 (2010): 341-355. <http://eudml.org/doc/272211>.
@article{Morita2010,
abstract = {Let $K$ be a $p$-adic local field with residue field $k$ such that $[k : k^p] = p^e < +\infty $ and $V$ be a $p$-adic representation of $\text\{\rm Gal\}(\overline\{K\}/K)$. Then, by using the theory of $p$-adic differential modules, we show that $V$ is a Hodge-Tate (resp. de Rham) representation of $\text\{\rm Gal\}(\overline\{K\}/K)$ if and only if $V$ is a Hodge-Tate (resp. de Rham) representation of $\text\{\rm Gal\}(\overline\{K^\{\text\{\rm pf\}\}\}/K^\{\text\{\rm pf\}\})$ where $K^\{\text\{\rm pf\}\}/K$ is a certain $p$-adic local field with residue field the smallest perfect field $k^\{\text\{\rm pf\}\}$ containing $k$.},
author = {Morita, Kazuma},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {$p$-adic Galois representation; $p$-adic cohomology; $p$-adic differential equation},
language = {eng},
number = {2},
pages = {341-355},
publisher = {Société mathématique de France},
title = {Hodge-Tate and de Rham representations in the imperfect residue field case},
url = {http://eudml.org/doc/272211},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Morita, Kazuma
TI - Hodge-Tate and de Rham representations in the imperfect residue field case
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 2
SP - 341
EP - 355
AB - Let $K$ be a $p$-adic local field with residue field $k$ such that $[k : k^p] = p^e < +\infty $ and $V$ be a $p$-adic representation of $\text{\rm Gal}(\overline{K}/K)$. Then, by using the theory of $p$-adic differential modules, we show that $V$ is a Hodge-Tate (resp. de Rham) representation of $\text{\rm Gal}(\overline{K}/K)$ if and only if $V$ is a Hodge-Tate (resp. de Rham) representation of $\text{\rm Gal}(\overline{K^{\text{\rm pf}}}/K^{\text{\rm pf}})$ where $K^{\text{\rm pf}}/K$ is a certain $p$-adic local field with residue field the smallest perfect field $k^{\text{\rm pf}}$ containing $k$.
LA - eng
KW - $p$-adic Galois representation; $p$-adic cohomology; $p$-adic differential equation
UR - http://eudml.org/doc/272211
ER -
References
top- [1] F. Andreatta & O. Brinon, -representations dans le cas relatif, this volume, p. 279–339. Zbl1195.11074MR2662666
- [2] O. Brinon, Une généralisation de la théorie de Sen, Math. Ann.327 (2003), 793–813. Zbl1072.11089MR2023317
- [3] O. Brinon, Représentations cristallines dans le cas d’un corps résiduel imparfait, Ann. Inst. Fourier (Grenoble) 56 (2006), 919–999. Zbl1168.11051MR2266883
- [4] J.-M. Fontaine, Le corps des périodes -adiques, Astérisque223 (1994), 59–111. Zbl0940.14012MR1293971
- [5] J.-M. Fontaine, Représentations -adiques semi-stables, Astérisque223 (1994), 113–184. Zbl0865.14009MR1293972
- [6] J.-M. Fontaine, Arithmétique des représentations galoisiennes -adiques, Astérisque295 (2004), 1–115. Zbl1142.11335MR2104360
- [7] O. Hyodo, On variation of Hodge-Tate structures, Math. Ann.284 (1989), 7–22. Zbl0645.14002MR995378
- [8] K. Kato, Generalized explicit reciprocity laws, Adv. Stud. Contemp. Math. (Pusan) 1 (1999), 57–126. Zbl1024.11029MR1701912
- [9] K. Kato, -adic Hodge theory and values of zeta functions of modular forms, Astérisque295 (2004), 117–290. Zbl1142.11336MR2104361
- [10] S. Sen, Continuous cohomology and -adic Galois representations, Invent. Math. 62 (1980/81), 89–116. Zbl0463.12005MR595584
- [11] T. Tsuji, Purity for Hodge-Tate representations, preprint. Zbl1239.14014MR2818716
- [12] N. Tsuzuki, Variation of -adic de Rham structures, preprint, 1991.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.