Hodge-Tate and de Rham representations in the imperfect residue field case

Kazuma Morita

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 2, page 341-355
  • ISSN: 0012-9593

Abstract

top
Let K be a p -adic local field with residue field k such that [ k : k p ] = p e < + and V be a p -adic representation of Gal ( K ¯ / K ) . Then, by using the theory of p -adic differential modules, we show that V is a Hodge-Tate (resp. de Rham) representation of Gal ( K ¯ / K ) if and only if V is a Hodge-Tate (resp. de Rham) representation of Gal ( K pf ¯ / K pf ) where K pf / K is a certain p -adic local field with residue field the smallest perfect field k pf containing k .

How to cite

top

Morita, Kazuma. "Hodge-Tate and de Rham representations in the imperfect residue field case." Annales scientifiques de l'École Normale Supérieure 43.2 (2010): 341-355. <http://eudml.org/doc/272211>.

@article{Morita2010,
abstract = {Let $K$ be a $p$-adic local field with residue field $k$ such that $[k : k^p] = p^e &lt; +\infty $ and $V$ be a $p$-adic representation of $\text\{\rm Gal\}(\overline\{K\}/K)$. Then, by using the theory of $p$-adic differential modules, we show that $V$ is a Hodge-Tate (resp. de Rham) representation of $\text\{\rm Gal\}(\overline\{K\}/K)$ if and only if $V$ is a Hodge-Tate (resp. de Rham) representation of $\text\{\rm Gal\}(\overline\{K^\{\text\{\rm pf\}\}\}/K^\{\text\{\rm pf\}\})$ where $K^\{\text\{\rm pf\}\}/K$ is a certain $p$-adic local field with residue field the smallest perfect field $k^\{\text\{\rm pf\}\}$ containing $k$.},
author = {Morita, Kazuma},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {$p$-adic Galois representation; $p$-adic cohomology; $p$-adic differential equation},
language = {eng},
number = {2},
pages = {341-355},
publisher = {Société mathématique de France},
title = {Hodge-Tate and de Rham representations in the imperfect residue field case},
url = {http://eudml.org/doc/272211},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Morita, Kazuma
TI - Hodge-Tate and de Rham representations in the imperfect residue field case
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 2
SP - 341
EP - 355
AB - Let $K$ be a $p$-adic local field with residue field $k$ such that $[k : k^p] = p^e &lt; +\infty $ and $V$ be a $p$-adic representation of $\text{\rm Gal}(\overline{K}/K)$. Then, by using the theory of $p$-adic differential modules, we show that $V$ is a Hodge-Tate (resp. de Rham) representation of $\text{\rm Gal}(\overline{K}/K)$ if and only if $V$ is a Hodge-Tate (resp. de Rham) representation of $\text{\rm Gal}(\overline{K^{\text{\rm pf}}}/K^{\text{\rm pf}})$ where $K^{\text{\rm pf}}/K$ is a certain $p$-adic local field with residue field the smallest perfect field $k^{\text{\rm pf}}$ containing $k$.
LA - eng
KW - $p$-adic Galois representation; $p$-adic cohomology; $p$-adic differential equation
UR - http://eudml.org/doc/272211
ER -

References

top
  1. [1] F. Andreatta & O. Brinon, B dR -representations dans le cas relatif, this volume, p. 279–339. Zbl1195.11074MR2662666
  2. [2] O. Brinon, Une généralisation de la théorie de Sen, Math. Ann.327 (2003), 793–813. Zbl1072.11089MR2023317
  3. [3] O. Brinon, Représentations cristallines dans le cas d’un corps résiduel imparfait, Ann. Inst. Fourier (Grenoble) 56 (2006), 919–999. Zbl1168.11051MR2266883
  4. [4] J.-M. Fontaine, Le corps des périodes p -adiques, Astérisque223 (1994), 59–111. Zbl0940.14012MR1293971
  5. [5] J.-M. Fontaine, Représentations p -adiques semi-stables, Astérisque223 (1994), 113–184. Zbl0865.14009MR1293972
  6. [6] J.-M. Fontaine, Arithmétique des représentations galoisiennes p -adiques, Astérisque295 (2004), 1–115. Zbl1142.11335MR2104360
  7. [7] O. Hyodo, On variation of Hodge-Tate structures, Math. Ann.284 (1989), 7–22. Zbl0645.14002MR995378
  8. [8] K. Kato, Generalized explicit reciprocity laws, Adv. Stud. Contemp. Math. (Pusan) 1 (1999), 57–126. Zbl1024.11029MR1701912
  9. [9] K. Kato, p -adic Hodge theory and values of zeta functions of modular forms, Astérisque295 (2004), 117–290. Zbl1142.11336MR2104361
  10. [10] S. Sen, Continuous cohomology and p -adic Galois representations, Invent. Math. 62 (1980/81), 89–116. Zbl0463.12005MR595584
  11. [11] T. Tsuji, Purity for Hodge-Tate representations, preprint. Zbl1239.14014MR2818716
  12. [12] N. Tsuzuki, Variation of p -adic de Rham structures, preprint, 1991. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.